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Abstract

This note shows that the modified Kalman smoother for state space systems with lagged
states in the measurement equation, introduced in Nimark (2015, Economics Letters 127),
is in general not minimizing the mean squared error (MSE). We derive the MSE-minimizing
Kalman smoother, discuss alternative computationally more efficient smoothing algorithms
and compare the competing smoother with regards to the MSE.
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In this note, we consider state space systems with a lagged state in the measurement equation
for which Nimark (2015) derives a modified low-dimensional Kalman filter. Nimark (2015) also
states, without a formal derivation, that the filtered state estimates from the modified filter can
be plugged into the standard, i.e., unmodified, Kalman smoother of Hamilton (1994). In this
paper we show that to use the filtered state estimates from the modified filter, we also need to
modify the Kalman smoother to obtain the MSE-minimizing smooth state estimates. That is,
the claim that the filtered estimates from Nimark’s (2015) modified filter can be plugged into the
standard smoother is in general not correct. In what follows, we derive three modified Kalman
smoother that all can be used in combination with the modified Kalman filter of Nimark (2015).
The first is based on the same principles as the one in Hamilton (1994). The second and third, and
computationally more efficient, smoother are a modified version of the smoother of de Jong (1988,
1989) and Kohn and Ansley (1989), and a modified version of the disturbance-smoother-based
state smoother of Koopman (1993). Finally, the minimum variance estimator for the smooth
states will be compared to the Nimark (2015) smoother.
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1 The state space model

In this note we stick as close as possible to the notation of Nimark (2015) and consider the state
space model

Xt = AXt−1 + Cut, Zt = D1Xt +D2Xt−1 +Rut, (1.1)

where ut is a m-dimensional vector of disturbances being multivariate normally distributed with
zero mean and the identity as variance-covariance matrix. The observable at time t, Zt, is a p× 1
vector and the state vector Xt is of dimension n × 1. Similar to Nimark (2015), we use for the
conditional expectation and variance the notations

Xt|t−s = E(Xt|Z1:t−s, X0|0), Pt|t = E((Xt −Xt|t)(Xt −Xt|t)
′),

with Z1:t = (Z ′1, . . . , Z
′
t)
′ and we initialize the system by X0 ∼ N(X0|0, P0|0).

2 The modified Kalman filter

The standard solution to apply the Kalman filter to the state space system (1.1) is obtained by
augmenting the state vector with lagged states. A modified Kalman filter, which operates with
an n-dimensional state vector, was derived by Nimark (2015). Nimark’s (2015) modified Kalman
filter can be summarized by the following recursion

Z̃t = Zt − D̃Xt−1|t−1, Pt|t−1 = APt−1|t−1A+ CC ′, (2.1)

Xt|t = AXt−1|t−1 +KtZ̃t, Pt|t = Pt|t−1 −KtFtK
′
t, (2.2)

with D̃ = (D1A+D2) and where the Kalman gain is given by Kt = UtF
−1
t with

Ut = E(XtZ̃
′
t) = APt−1|t−1D̃

′ + CC ′D′1 + CR′, (2.3)

Ft = E(Z̃tZ̃
′
t) = D̃Pt−1|t−1D̃

′ + (D1C +R)(D1C +R)′. (2.4)

3 On the Kalman smoother for systems with a lagged

state in the measurement equation

To derive the updating equations which are purely based on filtered states and not on the ob-
servables, Hamilton (1994) uses the following approach.1 By the formula for updating linear
projections (Eq. [4.5.30] in Hamilton (1994)) one gets

E(Xt|Xt+1, Z1:t, X0|0) = Xt|t + Ĵt(Xt+1 −Xt+1|t),

with Ĵt = Pt|tA
′P−1t+1|t. In a next step, Hamilton (1994) argues that E(Xt|Xt+1, Z1:t, X0|0) is equal

to E(Xt|Xt+1, Z1:T , X0|0), as the error

Xt − E(Xt|Xt+1, Z1:t, X0|0)

1 This state smoothing algorithm goes back to Anderson and Moore (1979) and Rauch et al. (1965).
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is uncorrelated with Zt+j, for 0 < j ≤ T − t. While this is true for a standard Kalman filter, as
shown in Hamilton (1994), this is (in general) not the case for state space systems with a lagged
state in the measurement equation, i.e., in general for state space systems of the form (1.1)

Corr(Xt − E(Xt|Xt+1, Z1:t, X0|0), Zt+1) 6= 0

and therefore

E(Xt|Xt+1, Z1:t, X0|0) 6= E(Xt|Xt+1, Z1:T , X0|0). (3.1)

As a consequence, the smoother stated in Eq. (4.2) in Nimark (2015)2

X̂t|T = Xt|t + Ĵt(Xt+1|T −Xt+1|t), Ĵt = Pt|tA
′P−1t+1|t, (3.2)

is in general not equal to E(Xt|Z1:T , X0|0) as claimed by Nimark (2015). Note that in general

the smooth estimate, X̂t|T , (Eq. (3.2)) is also not minimizing the MSE to Xt conditional on the
complete history of the observables Z1:T .

This can be easily verified, e.g., by considering the special case A = 0n×n. Then, by (3.2), we
get

X̂T−1|T = XT−1|T−1 ⇒ Var(XT−1 − X̂T−1|T ) = PT−1|T−1 (3.3)

and in contrast for

XT−1|T = XT−1|T−1 + PT−1|T−1D
′
2F
−1
T Z̃T (3.4)

we obtain

Var(XT−1 −XT−1|T ) = PT−1|T−1 − PT−1|T−1D′2F−1T D2PT−1|T−1. (3.5)

Both smoother, (3.2) and (3.4), are obviously unbiased and as PT−1|T−1D
′
2F
−1
T D2PT−1|T−1 is

positive semidefinite if FT is positive semidefinite it follows with (3.3) and (3.5)

MSE(XT−1|T ) = tr(PT−1|T−1)− tr(PT−1|T−1D
′
2F
−1
T D2PT−1|T−1)

≤ tr(PT−1|T−1) = MSE(X̂T−1|T ),

i.e., the smoother, X̂T−1|T , is not the MSE-minimizing estimator of XT−1 given the complete
history of the observables Z1:T .

4 Kalman smoothing algorithms for the modified system

Similar to Hamilton (1994), the MSE-minimizing smoother for the modified system can be ob-
tained using the updating equation for linear projections but with an adaption for systems with
a lagged state in the measurement equation. Start by considering the conditional expectation
E(Xt|Xt+1, Z1:t+1, X0|0) and by applying the formula for updating a linear projection (Eq. [4.5.30]
in Hamilton (1994))

E(Xt|Xt+1, Z1:t+1, X0|0) = Xt|t+1 + E((Xt −Xt|t+1)(Xt+1 −Xt+1|t+1)
′)

2 Note that there is a typo in Eq. (4.2) in Nimark (2015), where the index of Ĵ was t − 1 instead of t, as in
Hamilton (1994).
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· E((Xt+1 −Xt+1|t+1)(Xt+1 −Xt+1|t+1)
′)−1(Xt+1 −Xt+1|t+1)

= Xt|t+1 + P ′t+1,t|t+1P
−1
t+1|t+1(Xt+1 −Xt+1|t+1),

where Pt+1,t|t+1 = E((Xt+1 − Xt+1|t+1)(Xt − Xt|t+1)
′) = APt|t − Kt+1D̃Pt|t. From the standard

theory on state smoothing (see, e.g., Durbin and Koopman (2012)), we get the one-step ahead
smooth state as

Xt|t+1 = Xt|t + Pt|tD̃
′F−1t+1Z̃t+1.

Future observables, Zt+j, for 1 < j ≤ T − t, can be written as

Zt+j = D̃Xt+j−1 + (D1C +R)ut+j = D̃
(
Aj−2Xt+1 +

j−1∑
i=2

Aj−1−iCut+i

)
+ (D1C +R)ut+j,

where we use the notational convention that A0 is the identity and An denotes the n-th power of
the square matrix A. Therefore, using the same reasoning as in Hamilton (1994), we see that the
prediction error

Xt − E(Xt|Xt+1, Z1:t+1, X0|0) = Xt −Xt|t+1 − P ′t+1,t|t+1P
−1
t+1|t+1(Xt+1 −Xt+1|t+1) (4.1)

is uncorrelated with Zt+j for 1 < j ≤ T − t. This follows because the prediction error (4.1) is by
construction uncorrelated with Xt+1, and by assumption uncorrelated with ut+j, ut+j−1, . . . , ut+2.
As a consequence, we get

E(Xt|Xt+1, Z1:T , X0|0) = E(Xt|Xt+1, Z1:t+1, X0|0) (4.2)

and by applying the law of iterated projections, as Hamilton (1994), we obtain the smooth
estimate, E(Xt|Z1:T , X0|0), by projecting (4.2) on Z1:T . The smooth estimate is given by

Xt|T = E(Xt|Z1:T , X0|0) = Xt|t+1 + Jt(Xt+1|T −Xt+1|t+1), (4.3)

with Jt = P ′t+1,t|t+1P
−1
t+1|t+1.

4.1 MSE of the smooth state

Analogously to Hamilton (1994), by subtracting Xt from Eq. (4.3) and rearranging, we obtain

Xt −Xt|T + JtXt+1|T = Xt −Xt|t+1 + JtXt+1|t+1. (4.4)

Multiplying (4.4) with its transpose and applying the expectation implies

Pt|T + JtE(Xt+1|TX
′
t+1|T )J ′t = Pt|t+1 + JtE(Xt+1|t+1X

′
t+1|t+1)J

′
t, (4.5)

where we used E((Xt − Xt|T )X ′t+1|T ) = 0 and E((Xt − Xt|t+1)X
′
t+1|t+1) = 0. Rearranging (4.5)

results in the backward-recursion

Pt|T = Pt|t+1 + Jt(Pt+1|T − Pt+1|t+1)J
′
t. (4.6)
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4.2 Computationally more efficient smoother for the modified system

We first reformulate the state space problem (1.1) in a comparable way as the so-called innovation
analogue stated in Durbin and Koopman (2012). Using the updating equations of the modified
filter (2.1)–(2.2), we get with Lt = A−KtD̃ and Mt = C −Kt(D1C +R)

Z̃t = Zt − Zt|t−1 = D̃X̃t−1 + (D1C +R)ut, (4.7)

X̃t = Xt −Xt|t = (A−KtD̃)X̃t−1 + (C −Kt(D1C +R))ut = LtX̃t−1 +Mtut. (4.8)

As shown by Durbin and Koopman (2012), ZT is fixed if Zt and Z̃t+1, . . . , Z̃T are fixed. Note
that the errors Z̃t+1, . . . , Z̃T are uncorrelated and E(Z̃j|Z1:t, X0|0) = 0 for j = t + 1, . . . , T . By
the formula for updating a linear projection (Eq. [4.5.30] in Hamilton (1994)), it follows for the
smooth state

Xt|T = Xt|t +
T∑

j=t+1

E(X̃tZ̃
′
j)E(Z̃jZ̃

′
j)
−1Z̃j, (4.9)

where E(Z̃jZ̃
′
j)
−1 = F−1j is the second term of the Kalman gain (2.4). Using Eq. (4.7)–(4.8), we

get for j = t+ 1, . . . , T

E(X̃tZ̃
′
j) = E(X̃tX̃

′
j−1)D̃

′ + E(X̃tu
′
j)(D1C +R)′ = Pt|tL

′
t+1 · · ·L′j−1D̃′, (4.10)

where we apply the notational convention that L′t+1 · · ·L′j−1 is the identity In for j = t + 1 and
L′t+1 for j = t+ 2. Inserting Eq. (4.10) into Eq. (4.9) results in the backward recursion

Xt|T = Xt|t + Pt|trt, rt = D̃′F−1t+1Z̃t+1 + L′t+1rt+1, (4.11)

with initial conditions rT = 0n×1 and LT = 0n×n. By the theory for updating linear projections
(Eq. [4.5.31] in Hamilton (1994)), we obtain for the variance of the smooth state vector

Pt|T = Pt|t −
T∑

j=t+1

E(X̃tZ̃
′
j)E(Z̃jZ̃

′
j)
−1E(Z̃jX̃

′
t), (4.12)

and by inserting Eq. (4.10) into (4.12), we obtain the backward recursion

Pt|T = Pt|t − Pt|tNtPt|t, Nt = D̃′F−1t+1D̃ + L′t+1Nt+1Lt+1, (4.13)

with initial condition NT = 0n×n. Note that the backward recursion for the smooth state (4.11)
and its variance (4.13) are very similar to the smoother proposed in de Jong (1988, 1989) and
Kohn and Ansley (1989) but with a modification to be applicable in the context of Nimark’s
(2015) modified Kalman filter.

An even more efficient fast state smoothing recursion, similar to Koopman (1993), can be
obtained by computing the smooth disturbances via the backward recursion

ut|T = (D1C +R)′F−1t Z̃j +M ′
trt, (4.14)

with the recursively defined rt from (4.11). Then, like Koopman (1993), we obtain via a forward
recursion the smooth states as

Xt|T = AXt−1|T + Cut|T , (4.15)
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with initial condition X0|T = X0|0 + P0|0r0.
The gains in computational costs of the modified de Jong (1988, 1989) and Kohn and Ansley

(1989) smoother (4.11) and the modified Koopman (1993) smoother (4.14)–(4.15) are comparable
to the classical case, i.e., without lagged state in the measurement equation.3 Further, note that
the three different recursions for the smooth states (4.3), (4.11) and (4.14)–(4.15) are equivalent,
i.e., return the same smooth states Xt|T = E(Xt|Z1:T , X0|0). The same applies to the two different
recursions for obtaining the variance of the smoother (4.6) and (4.13).

4.3 The MSE of the Nimark (2015) smoother

Nimark (2015) claims that by Hamilton (1994) the variance of the smooth state, X̂t|T , is given

by P̂t|T = Pt|t + Ĵt(P̂t+1|T − Pt+1|t)Ĵ
′
t. As in general X̂t|T 6= E(Xt|Z1:T , X0|0) (see (3.1)–(3.2)),

the formula of Hamilton (1994) cannot be directly applied to obtain the variance of X̂t|T . The

smoother, X̂t|T (Eq. (3.2)), can be rewritten as

X̂t|T = Xt|t +
T∑

j=t+1

Ĵt · · · Ĵj−1KjZ̃j.

As the errors Z̃j are uncorrelated, the variance of X̂t|T can be obtained as

Pt|t +
T∑

j=t+1

[
Ĵt · · · Ĵj−1KjFjK

′
jĴ
′
j−1 · · · Ĵ ′t − Ĵt · · · Ĵj−1KjE(Z̃jX̃

′
t)− E(X̃tZ̃

′
j)K

′
jĴ
′
j−1 · · · Ĵ ′t

]
.

(4.16)

Inserting Eq. (4.10) into Eq. (4.16) results in the backward recursion

E((Xt − X̂t|T )(Xt − X̂t|T )′) = Pt|t + ĴtN̂tĴ
′
t − ĴtM̂tPt|t − Pt|tĴ ′tM̂ ′

t ,

N̂t = Kt+1Ft+1K
′
t+1 + Ĵt+1N̂t+1Ĵ

′
t+1,

M̂t = Kt+1D̃ + Ĵt+1M̂t+1Lt+1,

with initial conditions N̂T = 0n×n and M̂T = 0n×n.

5 Application: ARMA dynamics with measurement error

Data revisions are a typical phenomenon for economic time series. As a consequences researcher
and decision maker have to rely on econometric models which are capable to allow or even ex-
plicitly model measurement errors. Jacobs and van Norden (2011) propose to use a state space
model with a Kalman filter if the “true” signal can be described by a stochastic process, like an
ARMA-process, and the signals can only be observed up to a measurement error.4 In the following
we will study ARMA(1,1)-processes, and as a special case a MA(1)-process, with measurement

3 A discussion of the comparative computational efficiency of the different smoother algorithms in the unmod-
ified case can be found in Section 4.6.1–4.6.2 of Durbin and Koopman (2012) and in Koopman (1993).

4 In the context of data revisions, Jacobs and van Norden (2011) provide a detailed discussion of measurement
errors and their components, like noise, news and spillover effects.
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Figure 1: Relative increase in the MSE, (MSE(X̂T |t)−MSE(XT |t))/MSE(XT |t), as a function of the MA(1)-
parameter, θ1, and the signal-to-noise ratio, q = σ2

ε /σ
2
δ . The left, middle and right plots show the result for the

AR(1)-parameters φ1 = −0.5, 0, 0.9, respectively.

error. Like in Jacobs and van Norden (2011) let ỹt be the “true” unobserved value. We assume
for ỹt an ARMA(1,1)-process

ỹt = φ1ỹt−1 + θ1εt−1 + εt, εt ∼ N(0, σ2
ε ),

and an additive measurement error δt ∼ N(0, σ2
δ ), so that the observed value is given by yt = ỹt+δt.

Using a specific state space representation of ARMA-processes given in Hamilton (1994, Eq.
[13.1.22]–[13.1.23]) and by applying the theory of Nimark (2015), we get for yt a state space
representation with lagged state in the measurement equation of the form (1.1)

Xt = φ1Xt−1 + σεu1,t, yt = Xt + θ1Xt−1 + σδu2,t,

with a one-dimensional state variable, Xt, and a bivariate disturbance vector ut := (u1,t, u2,t)
′

being independent standard normally distributed. As the parameters are not time-varying, we
can numerically determine the steady state for the Kalman recursion and compute the MSE in
the steady state for both smoother.

W.l.o.g. let σ2
ε = 1 be the variance of the disturbance of the ARMA(1,1)-signal, and the

variance of the measurement error σ2
δ = σ2

ε/q is implicitly given by the signal-to-noise ratio, q.
For the AR(1)-parameter we consider the values φ1 = −0.5, 0, 0.9, for the MA(1)-parameter the
range θ1 ∈ [−0.99, 0.99] and for the signal-to-noise ratio the range q ∈ [0.01, 3]. In Figure 1,
the left, middle and right plots correspond to the different AR(1)-parameters and the relative
difference in the MSE of the two smoother, (MSE(X̂T |t)−MSE(XT |t))/MSE(XT |t), is plotted
against the MA(1)-parameter and the signal-to-noise ratio. We clearly see that, if θ1 = 0 both
smoother have the same MSE. For all other considered scenarios the smoother of Nimark (2015),
X̂T |t, is having a larger MSE than the MSE-minimizing smoother, XT |t. In the most extreme

shown case, φ1 = 0.9, θ1 = −0.99, q = 3, the MSE of the smoother X̂T |t is 89.46% larger than for
the MSE-minimizing smoother.

6 Conclusion

In this note we derive the MSE-minimizing smoother for the modified Kalman filter of Nimark
(2015) for state space systems with a lagged state in the measurement equation. We demonstrate
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that the smoother of Nimark (2015) is not minimizing the MSE. Furthermore, we present com-
putationally more efficient smoothing algorithms for the modified system. The MSE-minimizing
smoother for the modified system can also be used in combination with the simulation smoother
of Durbin and Koopman (2002) as suggested by Nimark (2015).

Accompanying MATLAB code is available at https://github.com/MalteKurz/SSMwLS.
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