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Abstract

We introduce a new semiparametric model, GARCH with Functional
EX ogeneous Liquidity (GARCH-FunXL), to capture the impact of liquid-
ity, as implied by a stock exchange’s complete electronic limit order book
(LOB), on asset price volatility. LOB-implied liquidity can be viewed as a
functional rather than scalar or vectorial stochastic process. We adopt re-
cent ideas from the functional data analysis (FDA) literature to link scalar
conditional return volatility to curve-valued liquidity.

Simulation experiments for a log-GARCH version of the model show that
it works well in finite samples. Applying our new methodology to intraday
return data from the German XETRA system, we find a substantial liquidity
impact on return variation. Finally, we show that the forecast performance
of the GARCH-FunXL model is clearly superior as compared to a model
without liquidity impact.
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1 Introduction

The recent availability of high-frequency financial data has helped to deepen our
understanding of the microstructure of financial markets. At the same time, the
microstructure itself has changed as electronic order-driven trading platforms have
become, de facto, the standard for trading of financial securities. In the econo-
metric literature on high-frequency data, starting in the 1990s, two major strands
have developed. The first is concerned with the dynamic properties of the trading
process as a whole, i.e., not only of prices but also of trading volume, bid-ask
spreads etc., as well as their interactions. Financial duration models pioneered
by Engle and Russell (1998) and Engle (2000) and their various applications are
the most prominent examples of this line of research. The second strand can be
termed realized volatility. It aims at using high-frequency information on prices
to improve the measurement of price volatility and, in a second step, modeling
volatility dynamics. In other words, the realized volatility project has the same
goals as, say, GARCH modeling daily data, but hopes to improve accuracy by
looking at higher sampling frequencies.

The present paper contributes to the literature by bringing together a traditional
dynamic GARCH volatility model with the complete (in a cross-sectional sense)
”micro-state of the market” for a financial security as implied by its limit order
book (LOB).

To sketch the idea, consider a linear GARCH(1,1) specification for intraday,
de-seasonalized log-returns, rt,i = logPt,i − logPt,i−1, on the mid-quote, Pt,i, at
intraday time i and trading day t,

rt,i = σt,iεt,i, εt,i
iid∼ (0, 1), σ2

t,i = ω + αr2
t,i−1 + βσ2

t,i−1, (1)

as it has been applied, for instance, by Engle and Sokalska (2012) to 10-minute
returns on the New York Stock Exchange (NYSE). The LOB however does not
only reveal information on prices, but also on the size of limit orders around the
quotes, the LOB inventories. Figure 1 illustrates the state of a LOB at some given
time during a trading day. We denote the left curve, the bid curve, by x

(bid)
t,i (P )

and the right curve, the ask curve, by x
(ask)
t,i (P ), and view them as functions of the

price.
Now consider the case where order book inventories, x

(ask)
t (P ) say, have an

impact on the price. We extend the model introduced above by capturing possible
effects of these function-valued objects on the variation of the price by specifying
the conditional variance in terms of

σ2
t,i = ω + αr2

t,i−1 + βσ2
t,i−1 +

∫

P
γ(m)x

(ask)
t,i−1(m)dm, (2)

where P is the interval of possible prices. Extension (2) is now of the GARCH-X
type but, in contrast to existing specifications of this kind, the exogeneous variable
is a curve-valued, i.e., infinite-dimensional quantity. In fact,

∫
P γ(m)x

(ask)
t,i−1(m)dm
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Figure 1: State of a limit order book at some time during the trading day, consisting of
(i) prices, i.e. bid and ask quotes whose mean (the mid-quote) is represented
by a dot, and (ii) liquidity, represented by the available requested (left) and
offered (right) cumulative number of shares as a function of the price.

is the limit case of a linear predictor, where γ(m) is a functional rather than a vec-
torial parameter, mapping liquidity at all price levels P ∈ P to scalar conditional
volatility.

Early studies on the connection of liquidity and volatility (e.g., Gallant et al.
(1992), Jones et al. (1994)) employ daily transactions data to measure liquidity.
More recently, the structure (Gouriéroux et al., 1998) and dynamics (Härdle et al.
(2012); Bowsher (2004) in an early version of Bowsher and Meeks (2008)) of liquid-
ity as implied by an order-driven market have been studied. The GARCH-FunXL
approach proposed here is, to the best of our knowledge, the first attempt to model
volatility dynamics using the full LOB.

The remainder of the paper is organized as follows: Section 2 explains in detail
how liquidity curves, sampled intradaily at a constant frequency, are constructed
from LOB data and parsimoniously represented in the framework of functional
time series analysis. Basic empirical properties of these curves are evaluated for
three liquid stocks traded on the German XETRA system. Section 3 introduces
the GARCH-FunXL model. A two-step QML estimation procedure for the model’s
parameters, especially the functional parameter γ(m), is developed and the dif-
ferent sources of estimation uncertainty are discussed. In a simulation study we
investigate the finite-sample performance of the estimation strategy. In an empir-
ical application presented in Section 4, the model is fitted to the three XETRA
stocks. Both in-sample results and out-of-sample forecast evaluations underline
the relevance of liquidity for explaining price variation. Section 5 concludes the
paper.
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2 Liquidity

Limit order books carry dynamic information on price and liquidity of an asset.
Strictly speaking, the price is an implication of the state of liquidity. Nevertheless,
as will be detailed next, it is possible to measure both phenomena separately.

2.1 Limit order book information

Regardless of the specific market design (limit order book or competing market
makers), information on the current price and liquidity of a stock is given by the
requested (demand) and offered (supply) volume of shares around the quotes. The
latter are an implication of the offers and requests: The bid quote is the highest
supply price, the ask quote is the lowest demand price. The difference of the two
is always at least one tick.
LOBt, the state of the limit order book at some time t during a trading day,

can be characterized by P
(s)
t , s ∈ {bid, ask}, the quotes (measured in ticks), and

v
(s)
t (d), the outstanding number of shares on market side s and at a price distance

of d ticks from the respective quote. In the following, we call d the relative price or
distance. As limit sell orders may, in principle, be posted at any integer number,
we write dmaxt = max{d|v(ask)

t (d) > 0} for supply at the highest relevant price to
characterize the dimension of LOBt. Limit buy orders can be posted at any price
level between (but excluding) zero and the ask quote.

Then, the LOB at time t is given by the Dt = (P
(bid)
t + dmaxt + 3)-dimensional

vector

LOBt :=[P
(bid)
t , P

(ask)
t ,

v
(bid)
t (P

(bid)
t + 1), . . . , v

(bid)
t (0),

v
(ask)
t (0), . . . , v

(ask)
t (dmaxt )]′.

Dt is typically very large, and the pattern of active orders (i.e., all tuples {price,
# shares, market side}) highly irregular.

Adding up the demand (supply) in the market at a given relative price, we
obtain the cumulative volume.

Definition 1 (Cumulative volume, cumulative imbalance). Let v
(s)
t (d), d = 0, 1, 2, . . .

be the volume in the book at a distance of d ticks from the best quote on market
side s ∈{bid, ask}. The cumulative volume (CV) at side s, tick d and time t is
defined by

x
(s)
t (d) =

d∑

k=0

v
(s)
t (k),
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and the cumulative imbalance at tick d and time t by

x
(imb)
t (d) = x

(ask)
t (d)− x(bid)

t (d).

There is a one-to-one relationship between CV and the average price per share
as a function of the offered/requested market order volume as has been analyzed
in Gouriéroux et al. (1998) and Bowsher (2004). If the volumes in the book are
weighted by their prices, the resulting quantity is called depth. Therefore, the
depth of an order book is a hybrid between a liquidity measure and a measure of
the price of an asset. As we seek to analyze liquidity impact on the price process,
we will use CV as our liquidity measure. A possible drawback of this approach is
that a comparison of the liquidities of different stocks becomes more complicated.

In the following, we call the mid-quote, Pt :=
(
P

(bid)
t + P

(ask)
t

)
/2, the price of

the asset. Assuming an equidistant sampling scheme at frequency 1/∆, the log-
return of the price is given by rt = logPt − logPt−∆. Confining ourselves to only
a single constant sampling frequency, we set ∆ := 1 without loss of generality.

Cumulative volume curves are termed (bid or ask) liquidity in the remainder of
the paper.

2.2 Diurnal patterns

As discussed next, the behaviour of price volatility and liquidity exhibits certain
regularities during a trading day that can be treated as being deterministic. In
case of volatility, this is the well-known U-shape over the trading day; for liquidity,
the pattern is a bivariate function of both time-of-day and relative price.

2.2.1 Volatility pattern

As we are interested in asset returns at high frequency, we introduce a second time
index or clock, so that rt,i denotes the i-th of I raw intraday returns on day t,
t = 1, . . . , T . Following Andersen and Bollerslev (1997), Andersen and Bollerslev
(1998) and Engle and Sokalska (2012), we assume that the raw return is given by
the product of a stochastic component, yt,i, and a deterministic diurnal component,
si, i.e.,

rt,i = yt,isi.

Our interest centers on the conditional variance of the stochastic part, yt,i. The
deterministic diurnal pattern, si, can be estimated as the mean squared return at
the specific intraday interval, ŝi = T−1

∑T
t=1 r

2
t,i (Engle and Sokalska, 2012), or a

smoothed version thereof. Andersen and Bollerslev (1997), for instance, use the
flexible Fourier functional form proposed by Gallant (1981), where smoothness of
the fitted pattern is implicitly imposed through the choice of constant and cyclical
components.

Similar to this second approach, we use a cubic smoothing spline to fit the
scatterplot of squared intraday returns vs. (intraday) time, where the smoothing
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parameter is chosen via generalized cross validation. Results are shown in Section
2.5.

2.2.2 Liquidity pattern

Curve-valued liquidity can be decomposed in an analogous way. Here, for each
market side, the diurnal pattern is itself a deterministic function of the relative
price d and intraday time i. Raw liquidity on market side s, x̃

(s)
t,i , is given by

x̃
(s)
t,i (d) = ν

(s)
i (d)x

(s)
t,i (d),

where νi(d) is the deterministic diurnal liquidity surface and x
(s)
t,i (d) the stochastic

liquidity component, which is of primary interest in our analysis.
As the pattern is typically less pronounced than the volatiliy pattern, we do not

smooth the diurnal pattern (which could in principle easily be done, for example
by using a tensor product spline) but rather use simple averaging. The estimator
is then given by

ν̂
(s)
i (dj) = T−1

T∑

t=1

x̃
(s)
t,i (dj),

where d1, . . . , dJ is the observation grid along the price axis. Empirical results are
shown in Section 2.5.

2.3 Liquidity as functional time series

In the following, assume that relative prices, originally observed on a tick grid, are
rescaled to lie in [0, 1], i.e., 0 = d1 < · · · < dJ = 1. Dropping the superscript “(s)”
for this exposition, we assume the de-seasonalized liquidity curves for each market
side to be generated by a functional stochastic process in discrete time, (xt)t∈Z,
whose observations are elements of the Hilbert space L2 ([0, 1]) with inner product

〈x, y〉 :=
∫ 1

0
x(s)y(s)ds, so that xt is assumed to be square integrable.

The liquidity process exhibits a mean function, µ(d) := E[xt(d)], and a (con-
temporaneous) covariance operator C(z)[〈x− µ, z〉(x− µ)] with covariance kernel
Σ(d,m) = Cov(xt(d), xt(m)). Mean and covariance kernel are constant over time.
The covariance operator has the form

C(z)(d) =

∫ 1

0

Σ(d,m)z(m)dm,

describing the contemporaneous linear dependence of different locations (relative
prices) of a liquidity curve. The quantities µ and Σ can be viewed as the func-
tional time series analogues to the unconditional mean vector and the lag-zero
autocovariance matrix in vector autoregression. The covariance operator admits
the spectral representation
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C(z) =
∞∑

j=1

λ〈φj, z〉φj,

where the λj are the (strictly decreasing) eigenvalues and the φj are the correspond-

ing orthonormal eigenfunctions of C, i.e.,
∫ 1

0
φ2
j(m)dm = 1 and

∫ 1

0
φk(m)φj(m)dm =

0, k 6= j hold. The ξj,t := 〈φj, xt〉 are called the scores or loadings of the j-th eigen-
function on liquidity at time t.

Based on the spectral representation, liquidity curves can then be represented
via the Karhunen-Loève decomposition,

xt(d) = µ(d) +
∞∑

j=1

ξj,tφj(d),

which is also called the functional principal component (FPC) representation. The
eigenvalues λj of the spectral representation are equal to the unconditional vari-
ances of the FPC scores ξj,t. As the eigenvalues are strictly decreasing, the FPCs
are sorted by their contribution to the xt’s (unconditional) variation. This gives
rise to the K-truncated FPC representation

xt(d) = µ(d) +
K∑

j=1

ξj,tφj(d) + vt(d),

where vt(d) =
∑∞

j=K+1 ξj,tφj(d) is the truncation error.
In practice, we are interested in approximating the curves using such a trun-

cation. The smallest number of components, K, necessary to explain a certain
proportion (say 99%) of the curves’ total variation is called the effective dimension
of the liquidity process.

In many applications in functional data analysis, either the observation grid
is irregular and/or sparse, or some measurement errors on the observed xt are
present. In all these cases, xt can not directly be observed but must be estimated
— usually in a nonparametric way. For our LOB data, however, none of these
problems are present: The relative price grid is dense and equidistant, there are
no missing values, and the measurement can be considered to be exact.

2.4 Estimation

At this point, the question arises how mean and eigenfunctions can be estimated
from data, and how to obtain the empirical FPC scores ξ̂j,t. In practice, we observe
discrete versions of the curves, xt, on the grid d1, . . . , dJ , such that the realization
of each curve is a J-dimensional vector. Raw estimates of mean function and
covariance kernel are then given by
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µ̂(dj) =
1

T

T∑

t=1

xt(dj), dj ∈ [0, 1],

and, with µ̂ := [µ̂(0) µ̂(d2) · · · µ̂(dJ−1) µ̂(1)]′ and Xc = [x1 − µ̂ · · · xT − µ̂]′,

Σ̂ =
1

T
Xc′Xc.

The eigenvalues and eigenfunctions of the raw covariance kernel Σ̂ can then, in
practice, be computed using standard software for singular value decomposition.
Given these, the empirical FPC scores ξ̂j,t =

∫ 1

0
(xt(m) − µ̂(m))φ̂j(m)dm can be

obtained by numerical integration. An estimator for the covariance operator itself
is then given by

Ĉ(z) =
1

T

T∑

t=1

〈xt − µ̂, z〉(xt − µ̂).

Although the observed liquidity curves are step functions by construction, it
may be convenient — especially with a view to the desired K-dimensional approx-
imation — to interpret them as realizations of a process generating intrinsically
smooth curves. There are several ways this can be achieved: by smoothing the
observed xt in the first place and then using discrete versions of these smoothed
objects when estimating mean and covariance operator, or by smoothing mean and
eigenfunctions after estimation.

Our strategy is to use the raw mean function, which we found to be already
quite smooth in our applications. In case of the covariance kernel, we smooth
the raw covariance kernel, Σ̂, using the sandwich smoother of Xiao et al. (2013).
Alternatives would be kernel smoothing (Staniswalis and Lee, 1998; Yao et al.,
2005) or penalized tensor product splines (Di et al., 2009). Moreover, we found that
in our applications eigenfunction estimates based on smoothed and raw covariance
kernel estimates do not differ much, so that the smoothing step is not indispensable.

The estimation procedure described so far was originally designed for the case
of iid data. Recently, Hörmann and Kokoszka (2010) introduced a stationarity
concept for functional time series, called Lp-m-approximability, under which µ̂ and
Ĉ(z) are

√
T -consistent. Throughout, we assume our liquidity process(es) to be

stationary in this sense.

2.5 Empirical results

Next, we discuss estimation of the diurnal patterns and the FPCs for the data at
hand. Before doing so, we provide a description of the data.
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Figure 2: Daily closing prices (left panel) and log returns (right panel) for Commerzbank
(upper panel), Linde (center panel), and MunichRe (bottom panel).

2.5.1 Data

We use historical limit order book data from the German XETRA system from
November 3, 2008 to December 31, 2010, obtained from the Deutsche Börse AG.
The data set covers 531 trading days and contains information on all limit order
submissions, revisions, cancellations, and all trades (i.e., market orders) at all
permissible price levels for three DAX constituents: Linde, an industrial company;
Commerzbank; and the (re-)insurance company MunichRe.1

The sample starts in midst of the global financial crisis and ends in a more
tranquil period. Figure 2 gives a first impression of the “longer-run” behavior
during the 26 months, showing the daily closing prices and the corresponding
returns. The price levels of the three stocks behave quite differently during this
period: Linde experienced a positive trend, MunichRe a sideways market, and
Commerzbank stabilized in the second half after some turmoil in early 2009. In
contrast, the dispersion patterns over time are quite similar for all three stocks.

The permissible price levels are given by the positive multiples of the tick size.

1For Commerzbank (MunichRe, Linde), 530 (526, 529) full trading days have been observed,
with 25 daily snapshots each, amounting to 13250 (13150, 13225) observations, from which
we compute 24 intraday returns per day. After removing the diurnal volatility pattern as
explained in the present section, we substract the mean from each series, so that no zero
returns remain. Then we remove 2 (3, 0) outliers. This leaves us with 12719 (12621, 12696)
observations, respectively. For the bid and ask liquidity curves, no missing values or outliers
are present.
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The tick size at XETRA depends on the price: For most of our sample period (from
January 2009 on), it is ¤0.001 if the instrument’s price is under ¤10, ¤0.005 for
prices in the interval [¤10, ¤50), 1 cent for prices from ¤50 to ¤100, and 5
cent otherwise. The data set allows us, in principle, to reconstruct LOBt for any t
during a given trading day. Continuous trading on XETRA starts after a 5-minute
opening auction at 9am, is interrupted by another auction of this type at 1pm,
and ends just before the closing auction at 5:30pm. In our analysis, we take LOB
snapshots every 20 minutes, sampled during continuous trading. Specifically, we
avoid auction effects by sampling at 9:09am, 9:29am, . . ., 12:49pm, and 1:09pm,
. . ., 5:29pm.

Order book data are typically available only up to a certain “level”, which means
that only the volumes at the first 10 or 20 best prices are provided. Therefore,
the actual price range covered depends on both the tick size and on how densely
the orders are posted. In our case, we have information on all admissible price
levels. In our analyses, however, we consider only volumes posted at the nearest
¤2 around the quotes on each market side, a range we expect to suffice to observe
all relevant aspects of the LOB. For all three stocks, we record cumulative volumes
in increments of one cent, so that the snapshots are of the form

LOBt :=[P
(bid)
t , P

(ask)
t ,

v
(bid)
t (¤0), v

(bid)
t (¤0.01), . . . , v

(bid)
t (¤2.00),

v
(ask)
t (¤0), v

(ask)
t (¤0.01), . . . , v

(ask)
t (¤2.00)]′.

Moreover, our data set not only contains the information that was available to
the market participants, it also provides a full picture of hidden liquidity as, for
example, iceberg orders are included.

2.5.2 Diurnal patterns

The estimated diurnal volatility patterns for the three stocks are shown in the
left panel of Figure 3. They basically exhibit the familiar U-shape. In the second
half of the day, volatility typically rises after 3:29pm (US markets open at 3:30pm
CET) and peaks at 4:09pm, before decreasing somewhat until the end of trading
at 5:30pm.

The other panels of Figure 3 show the corresponding liquidity patterns. They
are quite similar for the two market sides. Especially at greater distance from the
quotes, there is a slight upward trend which may be attributed to the fact that
some of these limit orders remain only in the book because they are unlikely to be
executed. Still, more than 95 percent of the total limit order volume is cancelled
rather than executed. The median lifetime of a limit order is less than one second,
and it increases with the distance to the quotes.
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Figure 3: Diurnal volatility (left panel) and liquidity (center and right panel) patterns for
the three stocks, fitted using a smoothing spline. From top to bottom: Com-
merzbank, Linde, and MunichRe.
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2.5.3 The structure of liquidity

Next, we analyze the de-seasonalized liquidity over the full sample. The time series
of bid and ask-liquidity curves for two exemplary days of the Commerzbank stock
are shown in Figure 4. Note that, by construction, the unconditional mean of
de-seasonalized liquidity is one for all locations, so that values above (below) one
can be interpreted as high (low) liquidity at a specific time of the day and region
of the LOB, respectively.

Turning to the functional principal components of the series, the top panel of
Figure 5 shows the normalized eigenvalues, i.e., the variances explained by each
of the first ten components, for the bid and ask sides, using the whole range of
201 tick levels. For both market sides, four components are needed to capture 95
percent of the variation in liquidity.

In the bottom part of Figure 5, the first four estimated eigenfunctions for both
market sides are shown. Note that the eigenfunctions are unique only up to the
sign. With this in mind, we conclude that the factor structure of both sides is quite
similar. In both cases, the first eigenfunction is almost horizontal and, therefore,
can be interpreted as a “level” factor. The remaining eigenfunctions capture differ-
ent aspects of liquidity variation, all having in common that deviations near the
quotes (in the left part of the domain) are larger than at a greater distance from
the quotes. This finding reflects the larger variation of liquidity near the quotes,
as seen already from Figure 5.

To statistically test for differences in the eigenfunctions, Benko et al. (2009)
propose a resampling-based test for equality of eigenfunctions for the two-sample
situation encountered here. Instead of applying this test, we estimate the scores,
ξj,t, of the truncated FPC expansion, x̂t =

∑4
j=1 ξj,tφ̂j, using OLS regressions of

the xt against the first four eigenfunctions. We find that eigenfunction estimates
based only on bid curves, on ask curves, or on both, respectively, yield in all
three cases virtually identical score estimates, ξ̂j,t, and, hence, approximations

x̂t =
∑4

j=1 ξ̂j,tφ̂j.
Liquidity, in contrast, is far from symmetric. The contemporaneous correlation

of the scores between the two market sides is rather low (see Table 1).

bid.1 bid.2 bid.3 bid.4
ask.1 -0.27 0.07 -0.04 0.34
ask.2 0.07 -0.02 0.09 -0.15
ask.3 0.08 -0.02 0.03 0.10
ask.4 -0.06 0.34 0.10 -0.08

Table 1: Contemporaneous sample correlations between the first four FPC score series
for the two market sides. Not shown: Correlations between scores of the same
market side which are orthonormal by construction.
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Figure 4: Functional time series of ask (red) and bid (blue) liquidity curves for April
3, 2009 (top) and February 1, 2010 (bottom), for the Commerzbank stock.
The left panel shows the raw data (cumulative number of shares, measured in
thousands, within a range of ¤0 to ¤2 from the quotes), the right panel shows
the de-seasonalized versions of the same curves.
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Figure 5: Top panel: Cumulative normalized eigenvalues of the estimated liquidity co-
variance operators. Bottom panel: First four estimated eigenfunctions for ask
(left) and bid (right) sides, all for Commerzbank. Note that the eigenfunctions
are unique only up to the sign.
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3 GARCH-FunXL

3.1 The model

The raw log-returns, rt,i, during intraday times i− 1 and i on day t, i = 1, . . . , I,
are assumed to be generated by

rt,i = yt,isi, (3)

yt,i = σt,iεt,i, εt,i
iid∼ (0, 1), (4)

where si is a deterministic diurnal volatility component, and σt,i is the conditional
volatility of the de-seasonalized returns, yt,i. This setup is as in Andersen and
Bollerslev (1997), Andersen and Bollerslev (1998) and Engle and Sokalska (2012),
denoted in the following by AB and ES, respectively, with the exception that
these authors further decompose σt into a daily and an intradaily component. ES
use commercially available data based on multifactor risk models for the daily
component, whereas AB adopt a GARCH specification. In principle, we could
also use these approaches but, at this stage, prefer to keep it simple.

Note that the model generates only intraday returns and assumes that σt,i stays
constant between the trading hours of subsequent trading days, i.e., σt,I = σt+1,0.

The conditional volatility follows a GARCH specification, which is augmented
by exogeneous information in terms of the liquidity curves at the beginning of each
intraday interval from both market sides, i.e.,

σt,i = f(yt,i−1, . . . , x
(ask)
t,i−1 , x

(bid)
t,i−1), (5)

where yt,i−1, . . . denotes the entire return history, in the following denoted by Ft,i−1.
As explained in Section 2, the liquidity curves are, as the yt,i, de-seasonalized
quantities.

In the following, we lighten notation by dropping the i. Furthermore, we consider
a log-GARCH specification whose endogeneous parts are of order 1. We let the
functional liquidities also enter the model in a log-linear fashion, such that the
conditional log-variance becomes

log σ2
t = ω + α log y2

t−1 + β log σ2
t−1 (6)

+

∫ 1

0

γ(ask)(m)x
(ask)
t−1 (m)dm+

∫ 1

0

γ(bid)(m)x
(bid)
t−1 (m)dm. (7)

We denote this larger information set, consisting of past returns plus liquidities at
t− 1, by FLt−1.

Collecting all this and the ingredients from Section 2, the logarithmic GARCH(1,1)-

FunXL model for returns with conditional volatility influenced by x
(s)
t−1, s ∈ {bid, ask},

is defined as follows.
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Definition 2 (Logarithmic GARCH(1,1)-FunXL process). Let x
(ask)
t , x

(bid)
t be drawn

from curve-valued exogeneous liquidity processes as specified above. Then, yt fol-
lows a logarithmic GARCH(1,1)-FunXL process, if

yt = σtεt, εt
iid∼ (0, 1) (8)

log σ2
t = ω + α log y2

t−1 + β log σ2
t−1

+

∫ 1

0

γ(ask)(m)x
(ask)
t−1 (m)dm+

∫ 1

0

γ(bid)(m)x
(bid)
t−1 (m)dm,

(9)

where

x
(s)
t = µ(s) +

∞∑

k=1

ξ
(s)
k;tφ

(s)
k . (10)

We assume that the terms
∫ 1

0
γ(s)(m)x

(s)
t−1(m)dm, s ∈ {bid, ask}, are non-degenerate

in the sense that the coefficient functions are finite over [0, 1] and recall that both
liquidity processes are stationary in the sense explained above, especially having
finite mean function and covariance operator. Then, if |E(log ε2

t )| < ∞, (8)-(10)
admits the ARMA(1,1)-(Fun)X representation

log y2
t = π0 + π1 log y2

t−1 + θ1 log ut−1

+ g
(
x

(ask)
t−1 , x

(bid)
t−1 ; γ(ask), γ(bid)

)
+ ut,

where

π0 = ω + (1− β)E[log ε2
t ],

π1 = α + β,

θ1 = −β,
ut = log ε2

t − E[log ε2
t ],

g
(
x

(ask)
t−1 , x

(bid)
t−1 ; γ(bid), γ(ask)

)
=

∫ 1

0

γ(ask)(m)x
(ask)
t−1 (m)dm+

∫ 1

0

γ(bid)(m)x
(bid)
t−1 (m)dm;

see also Sucarrat et al. (2013). An interesting feature is that the intercept and
therefore the autocorrelation function of log y2

t depends on the innovation distri-
bution via E[log ε2

t ]. It follows immediately that, for a model of order (1,1), log y2
t

is stationary if −1 < α + β < 1.
We choose the log-GARCH specification primarily to avoid non-negativity con-

straints for the functional exogeneous part of the model: while liquidity curves,
even if de-seasonalized, are non-negative by construction, the infinite-dimensional
liquidity parameters are unrestricted over the entire domain. A restriction that
guarantees non-negativity of the functional predictors appears hardly to be feasi-
ble.
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One further attractive feature of log-GARCH specifications is that log volatil-
ity has no lower bound (in contrast to the standard GARCH case). A possible
drawback could be that the model does not allow for zero returns.2

Another application of the log-GARCH-X, which is in some aspects similar to
ours, is the Realized GARCH model of Hansen et al. (2012).

3.2 Estimation

We recall from Section 2 that the liquidity curves can be approximated by their
first K functional principal components, i.e.,

x
(s)
t (d) ≈ µ(d)(s) +

K∑

k=1

φ
(s)
k (d)ξ

(s)
k,t .

Assumptions

We make the following assumptions:

(i) For each s, there is some K <∞ for which

∫ 1

0

∞∑

j=K+1

φ
(s)
j (m)x

(s)
t (m)dm = 0

⇔
∫ 1

0

∞∑

j=K+1

∞∑

i=1

φ
(s)
j (m)φ

(s)
i (m)ξ

(s)
i,t dm = 0

⇔
∫ 1

0

∞∑

j=K+1

∞∑

i=K+1

φ
(s)
j (m)φ

(s)
i (m)ξ

(s)
i,t dm = 0

holds.

(ii) This K is the same for both market sides.

This means that only a finite number of liquidity components, and moreover
only those that explain liquidity best, have an impact on our quantity of primary
interest, the price volatility.

However, this assumption does not rule out dynamic dependencies between the
first K and the remaining components. Consider, for example, the following vector
autoregressive (VAR) liquidity dynamics for a process whose covariance has K+L
non-zero eigenvalues, L ≥ 1,

2This is, however, not of practical relevance for de-meaned returns. For more details on log-
GARCH models see Francq et al. (2013), who use an asymmetric log-GARCH specification
(similar to the GJR-GARCH), which could also be adopted here.
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ξ
(s)
t =



ξ

(s)
1,t
...

ξ
(s)
K+L,t


 = ν(s) +

p∑

j=1

A
(s)
j ξ

(s)
t−j + v

(s)
t ,

x
(s)
t (d) = µ(s)(d) +

K+L∑

j=1

φ
(s)
j (d)ξ

(s)
j,t ,

i.e., each liquidity curve can be decomposed into K +L orthonormal components,
i.e.,

∫ 1

0

φi(m)φj(m)dm = 1 for i = j, and zero otherwise.

All univariate score processes are contemporaneously uncorrelated with each
other, but may well depend on lagged values of other processes. This is ruled out
if the autoregressive matrix of the full liquidity process is assumed to be block
diagonal in the sense that the first K components’ scores do not interact with
components K + 1, . . . , K + L.

Finally, while not explicitely claiming that the scores have such VAR dynamics,
we assume that the lead and lag effects of components K + 1, . . . on the first
K components’ scores are negligible, which seems to be a reasonable assumption
for our data: Fitting VAR models to the empirical FPC scores, we find that
autoregressive matrices are nearly diagonal, i.e., each individual score series is
mainly driven by its own past.

Two-step estimation

We estimate the GARCH-FunXL model in two steps.

1. Estimation of the liquidity curves, using the orthonormal FPC expansion

x̂
(s)
t (d) = µ̂(s)(d) +

K∑

k=1

φ̂
(s)
k (d)ξ̂

(s)
k,t ,

where the true K, mean function µ, and eigenfunctions φk are unknown, and the
ξ̂

(s)
k,t =

∫ 1

0
(x

(s)
t (m) − µ̂(s)(m))φ̂

(s)
k (m))dm are computed via numerical integration.

This step has been outlined in detail in Section 2.

2. QML estimation of the GARCH-FunXL parameters, using the scores ξ̂
(s)
k,t , k =

1, . . . , K, t = 1, . . . , T from Step 1 and the return data.

For statistical inference conditional on a truncated K-component FPC decom-
position of x

(s)
t , we employ a Gaussian quasi-likelihood approach to obtain es-

timates of ω, α, β, γ(bid), γ(ask). The conditional distribution of the logarithmic
GARCH(1,1)-FunXL with Gaussian innovations is given by
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yt|FLt−1 ∼N
(

0, exp

(
ω + α log y2

t−1 + β log σ2
t−1

∫ 1

0

.

+

∫ 1

0

γ(ask)(m)x
(ask)
t−1 (m)dm+

∫ 1

0

γ(bid)(m)x
(bid)
t−1 (m)dm

))
.

(11)

We do not claim the innovations to be Gaussian, instead we are interested in
inference on the latent volatility process only. The Gaussian quasi-log-likelihood
is given by

l(y,x;ω, α, β, γ(bid), γ(ask)) = −1

2

T∑

t=2

(
σ2
t +

y2
t

σ2
t

)
,

where y is the vector of de-seasonalized returns, and x the“matrix”of de-seasonalized
liquidity curves.

As both the liquidity curves, x
(s)
t , and the coefficients, γ(s)(·), are infinite-

dimensional objects, the term
∫ 1

0
γ(s)(m)x

(s)
t (m)dm has to be approximated by

some finite-dimensional representation. In our practical application, we use K =
1, . . . , 5. For all three stocks considered, K = 4 components explain at least 95
percent of the curves’ variation.

Introducing a K-dimensional parameter vector γ(s) = [γ
(s)
1 · · · γ

(s)
K ] for each

market side, we expand the coefficient function using the same set of K eigenfunc-
tions that is used to represent the curves themselves, i.e.,

γ(s)(d) =
K∑

k=1

γ
(s)
k φ̂

(s)
k (d),

so that, plugging in estimated mean, eigenfunctions and scores from the FPCA of
the liquidity curves, the integral

∫ 1

0
γ(s)(m)x

(s)
t (m)dm becomes

∫ 1

0

K∑

j=1

K∑

k=1

ξ̂
(s)
j;t φ̂

(s)
j (m)γ

(s)
k φ̂

(s)
k (m)dm =

K∑

k=1

γ
(s)
k ξ̂

(s)
k;t

by orthonormality of the eigenfunctions. This approach is well-known from func-
tional principal component regression and its core idea is the same as in PC regres-
sion within the usual scalar multiple regression setting. Note that this structural
assumption along with the assumption that only a finite number of components
affects the conditional variance implies an identification problem: There are in-
finitely many functions φj(d) which are orthogonal to the K functions appearing
in either the “true” or the fitted liquidity representation. Thus, each of these φj(d)
could be added to the basis expansion of γ(s)(m) without affecting the model’s
goodness of fit.

Defining

Gt−1 := α log y2
t−1 + β log σ2

t−1,

19



we can now write the conditional volatility as

log σ2
t = ω +Gt−1 +

∫ 1

0

γ(bid)(m)x
(bid)
t−1 (m)dm+

∫ 1

0

γ(ask)(m)x
(ask)
t−1 (m)dm

= ω +Gt−1 +
∑

s

∫ 1

0

γ(s)(m)x
(s)
t−1(m)dm

(
µ̂(s)(m) +

K∑

k=1

ξ̂
(s)
t−1;kφ̂

(s)
k (m)

)
dm

= ω +Gt−1 +
∑

s

∫ 1

0

γ(s)(m)µ̂(s)(m)dm

︸ ︷︷ ︸
=:γ

(s)
0

+
K∑

k=1

ξ̂
(s)
k;t−1

∫ 1

0

γ(s)(m)φ̂
(s)
k (m)dm

︸ ︷︷ ︸
=:γ

(s)
k

= ω′︸︷︷︸
:=ω+γ0

+Gt−1 +
∑

s

K∑

k=1

γ
(s)
k ξ̂

(s)
k;t−1.

(12)

Compared to the original model, the infinite-dimensional problem boils down
to estimating ω, α, β, γ

(bid)
1 , . . ., γ

(bid)
K , γ

(ask)
1 , . . ., γ

(ask)
K , i.e., 2K additional scalar

parameters. In practice, however, it may pay to be rather generous in choosing K,
because the components that explain much of the liquidity variation are not guar-
anteed to have a large impact on price volatility. Conversely, modes of variation
that are rather unimportant for liquidity variation may well be of great importance
for predicting price volatility.

Properties of the estimators

Although the inclusion of exogeneous variables (like interest rates or realized
volatility) has already been in vogue for some time, theoretical properties of
GARCH-X processes and especially QML estimators of their parameters have been
established only very recently. Han (2013) and Han and Kristensen (2014) investi-
gate QML estimation for a broad class of possible exogeneous processes, including
long-memory and integrated processes, but do so only for linear specifications and
univariate exogeneous processes. In particular, in case of a stationary exogeneous
process (as assumed here), QMLEs of linear GARCH parameters retain their fa-
vorable properties.

According to Sucarrat et al. (2013), Francq et al. (2013), and Hansen et al.
(2012), and to the best of our knowledge, such asymptotic results for log-GARCH-
X models do not exist. Hansen et al. (2012), based on the results of Straumann
et al. (2006), conjecture consistency and asymptotic normality of their QMLE in a
scalar log-GARCH-X framework without providing a proof. With our assumptions
regarding liquidity effects on volatility, we are basically in a log-GARCH-X setting
as well. However, an additional complication is given by the fact that our exoge-
neous variables, the FPC scores, are generated by a nonparametric procedure in
the first place, inducing additional estimation uncertainty. Surprisingly, this fact
is rarely addressed in the FDA literature, see for example Yao et al. (2005). This
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means that even if the step-two parameter estimates could be shown to be con-
sistent and asymptotically normal, ignoring estimation uncertainty from the first
step, i.e., for mean functions, eigenfunctions, and scores, will result in confidence
bands for γ(s)(·) that are too narrow. An alternative, frequently used in FDA, is to
choose a bootstrap approach. For our time series setting, the stationary bootstrap
proposed by Politis and Romano (1994), where blocks of random lengths are drawn
and reassembled to form resamples of the original series, is most suitable.

Simulation results reported in section 3.4 convey an idea of the properties of
QML estimators in our log-linear specification.

3.3 Liquidity impact

The conditional variance of the GARCH-FunXL model can be written as

σ2
t = exp

(
ω + α log y2

t−1 + β log σ2
t−1

)

× exp

(∫
γ(ask)(m)x

(ask)
t−1 (m)dm+

∫
γ(bid)(m)x

(bid)
t−1 (m)dm

)
.

(13)

that is, as a product of the (endogeneous) GARCH part and the exogeneous
liquidity part.
We call the latter, i.e.

LIt := exp

(∫
γ(ask)(m)x

(ask)
t−1 (m)dm+

∫
γ(bid)(m)x

(bid)
t−1 (m)dm

)
, (14)

the liquidity impact. Note that the subindex is chosen according to the target
variable, the conditional variance. Due to the multiplicative structure of the model,
liquidity reduces volatlity for LIt < 1 and increases it for LIt > 1. LIt can be split
up further into the contributions of each market side, LIt = LI

(ask)
t LI

(bid)
t .

Morover, in analogy to the news impact curve, a three-dimensional plot of LIt
against d and x

(s)
t−1(d) amounts to a liquidity impact surface (LIS). For a given

market side, the LIS shows the influence of liquidity on conditional variance at
all locations, d, within the LOB. However, as both the functional parameter and
the liquidity curves can have quite complex shapes — for instance different signs
at different locations of their domain — the interpretation of an LIS is not as
straightforward.

The K-truncated, estimated version of the liquidity impact is given by

L̂I t = exp
(
γ̂ ′

(ask)
ξ̂

(ask)

t−1 + γ̂ ′
(bid)
ξ̂

(bid)

t−1

)
.

Confidence statements for the liquidity impact are directly linked to estimation
uncertainty about the functional parameters discussed above.
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3.4 Simulation study

Next, using simulations, we investigate the adequacy of the estimation procedure
for our model. In functional regression, the quantity of interest is typically the
parameter. In the present study, however, we focus solely on the liquidity impact,
which naturally involves the estimation of the functional parameters.

To simulate the process, we specify the liquidity process as in Aue et al. (2015),
where the scores follow the VAR process

ξ
(s)
t =



ξ

(s)
1,t
...

ξ
(s)
K,t


 = ν(s) +

p∑

j=1

A
(s)
j ξ

(s)
t−j + v

(s)
t ,

x
(s)
t (d) = µ(s)(d) +

K∑

j=1

φ
(s)
j (d)ξ

(s)
j,t .

We simulate from a K = 5-dimensional score process with p = 1 and T = 1000,
5000, 10000. Note that for all data sets under investigation, K = 4 components
capture more than 95 percent of liquidity variation. We use the eigenfunctions from
the FPC representation of the Brownian motion (see Ash and Gardner (1975)),

φk(d) =
√

2 sin(k − 0.5)πd,

two different sets of eigenvalues, and also two different serial dependence structures
for the scores. As eigenvalues, we use (i) the decay as for Brownian motion,
λk = 4/(2k−1)2π2 and (ii) the empirical decay as estimated from Commerzbank’s
ask curves. As serial dependence structures we use (i) serial independence, A1 = 0,
and (ii) A1 resembling the dependence estimated from Commerzbank’s ask curves,

A1 =




0.98 0.08 0.09 −0.09 0.08
0.01 0.82 −0.37 0.03 −0.09
0.00 −0.20 0.24 −0.22 0.14
0.00 0.02 −0.10 0.81 0.26
0.00 −0.01 0.04 0.11 0.76



,

i.e., with dominant diagonal and low off-diagonal elements.
Empirical versions of ξ

(s)
t , from which A1 can be estimated, are obtained as a

by-product of the GARCH-FunXL estimation procedure proposed in Section 3.
The unconditional variance, Γξ(0), of a VAR process depends on both the au-

toregressive matrices, Aj, and the covariance matrix, Σv, of the innovation vector.
As we seek to discriminate between effects due to serial dependence and effects
due to score variation, we simulate (i) from processes with identical innovation
covariances and different serial dependencies (implying different unconditional co-
variance matrices), and (ii) from processes with equal unconditional covariance
matrices and different serial dependencies (implying different innovation covari-
ance matrices).
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We investigate models with only one functional exogeneous process, using three
different functional parameter settings: (i) γ(m) = 0.01φ1(m); (ii) a linear combi-
nation of all five eigenfunctions with weights 0.01, 0.004, 0.002, 0.0006, 0.001; and
(iii) γ(m) = 0.002 (4 + 5m− 10m2 + 4 cos(5m)). Thus, parameters for settings (i)
and (ii) should be more easily identifiable than for (iii) which is not constructed
from eigenfunctions. The implied true liquidity impacts are similar to those found
in the data. All function evaluations are on J = 201 equidistant grid points in
[0, 1].

A summary of the results is shown in Table 2. Not surprisingly, estimation
accuracy increases substantially with increasing sample size. Moreover, given the
unconditional covariance structure of the scores, identification of the liquidity im-
pact performs comparably well regardless of the functional parameter setting. That
is, in terms of liquidity impact it does not matter whether the true functional pa-
rameter is a linear combination of liquidity’s eigenfunctions or not. Finally, we
find that there is no clear connection of the unconditional variance of the scores
and the precision of the identification of the liquidity impact.

Note that estimated models which capture the true liquidity impact accurately
do not necessarily exhibit functional parameter estimates that are close to their
true values. This is due to the identification issue discussed above. It is particularly
the case (i) if K, the number of estimated components used in the basis expansion
of the parameter, exceeds the true K, and (ii) if the true parameter can not be
well approximated in terms of the eigenfunctions φk of the liquidity process.

If liquidity dynamics are governed by a stable VAR process and T is reasonably
large, we find that eigenfunctions can be estimated very accurately. Therefore,
in situations where the true functional parameter is a linear combination of these
eigenfunctions, its estimation is also accurate. The same holds for confidence bands
relying on the conjectured normal asymptotics, despite ignoring the estimation
uncertainty about the eigenfunctions.

4 Modeling XETRA returns

We use the GARCH-FunXL specification to model 20-minute snapshots for Com-
merzbank, MunichRe, and Linde stocks traded on the German XETRA LOB from
November 3, 2008 to December 31, 2010.3

We fit logarithmic GARCH-FunXL models of GARCH order (1,1) to the data,
considering (i) models with liquidity impact from only one market side (bid or ask);
(ii) models with lliquidity impact from both market sides; and (iii) models with liq-

uidity imbalance impact only, i.e., with functional regressor x
(imb)
t = x

(ask)
t −x(bid)

t .
Moreover, we vary the domain of prices around the quotes taken into account,
using D = 51 (101, 151, 201), corresponding to the domains [¤0 , ¤0.50] ([¤0 ,
¤1.00], [¤0 , ¤1.50], [¤0 , ¤2.00]). By doing this, we assess whether or not it
pays to take liquidity far from the quotes into account. Note that D (the width of

3For details on construction of the snapshots and removing deterministic patterns, see Section
2.
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the liquidity domain) can be viewed as an additional model parameter.

4.1 Estimation results

The goodness-of-fit is assessed employing the AIC and BIC. Their use in this
context is somewhat critical as the number of parameters in the penalty term is
3 +K (models with one FunX component) or 3 + 2K (two components), ignoring
the fact that the FPC scores are constructed regressors, which have been estimated
nonparametrically from the liquidity data.

Keeping this in mind, we find that the model with imbalance impact performs
worst for all three stocks and all four domains considered. The fit of log-GARCH-
FunXL models with imbalance impact is always worse than the fit of the pure
log-GARCH model, regardless of the information criterion used. This result indi-
cates that the imbalance measure, by construction, eliminates information on the
individual curves which is valuable for predicting the price process. Moreover, the
models accounting for both market sides’ liquidity outperform those using only
one side’s liquidity information in virtually all cases.

Table 3 shows the two goodness-of-fit results for these bid+ask models when
fitting K = 0, . . . , 5 FPCs, where K = 0 corresponds to the pure log-GARCH
model. We see a considerable improvement of the fit when allowing for liquidity
information. In many cases the improvement is largest when introducing the sec-
ond (not the first!) FPC, whose eigenfunction can induce stronger liquidity impact
near the quotes than deeper in the book, see Figure 5. In some cases, even the
fifth component improves the fit.

Interestingly, the results are not very sensitive with respect to the choice of D.
Note that asymptotically, i.e., for K → ∞ and T → ∞ at suitable rates, the
liquidity curves are represented perfectly, and the functional parameters converge
to their true values. This means that, if liquidity in some parts of the domain
[0, D] has no impact, the corresponding functional parameter will converge to
zero, and that, asymptotically, models with some given Di nest models with Dl <
Di. Limiting or “tuning” D therefore makes only sense in finite samples. The
insensitivity with respect toD that we find empirically indicates that the important
aspects of liquidity variation are located in the left part of the domain, i.e., near
the quotes. We return to this point when discussing the functional parameter
estimates. Moreover, the insensitivity may imply that models with large D capture
those near-the-quotes aspects of liquidity similarly well as models with smaller D.

Figure 6 depicts the functional parameter estimates for the three stocks consid-
ered and the models with both bid and ask liquidity impact. Using the conjecture
that the QML estimator of θ = (ω, α, β,γ(bid),γ(ask)), where γ(s) = (γ

(s)
1 · · · γ(s)

K )′,
is asymptotically normal (see Section 3.2), and assuming the estimation error for
the eigenfunctions to be negligible, confidence bands are constructed as follows.
We denote the the covariance matrix of θ by Σθ. Σθ contains K×K-dimensional
partitions, Σγ(s) , given by the covariance matrices of γ(s). We stack the corre-

sponding eigenfunctions, φ
(s)
k , k = 1, . . . , K, in the ”vector”
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Φ(s) = [φ
(s)
1 · · · φ

(s)
K ]′.

The covariance kernel of the functional parameter γ(s)(m) is then given by

Σγ(s)(d,m) = Φ′
(s)

(d)Σ(s)
γ Φ(s)(m).

Plugging in estimates of Φ(s) and Σγ(s) , standard errors of γ̂(s) are given by the

square root of the kernel estimate’s diagonal,
(

Σ̂γ̂(s)(d, d)
)1/2

.

All estimates have in common that both the effect and its uncertainty are largest
at the left boundary of the domain, i.e., near the quotes. High bid liquidity near the
quotes tends to increase, high ask liquidity tends to decrease volatility (with the
exception of Commerzbank). The local impact tends to vanish for liquidity deeper
in the book. However, none of the estimates is strictly positive or negative over the
entire domain of relative prices. Moreover, the sizes of the local liquidity effects on
the conditional variance are hard to interpret and compare anyway, particularly
between different stocks. As a consequence, we advocate the interpretation of the
cumulative impact, LIt, instead.

4.2 Liquidity impact

Liquidity impact is the cumulative effect of liquidity on the conditional variance
over the entire domain of relative prices. Figure 7 depicts the estimated liquidity
impact trajectories implied by the models with functional parameter estimates
shown in Figure 6. Note that liquidity impact appears to be fairly robust with
respect to the specific choice of K. The results for K = 2, 4, 5 are quite similar.
Also, we find the impact not only to be time-varying, but to differ in size and
direction, both between stocks and between market sides for the same stock. For
instance, for Commerzbank, the liquidity contribution to volatility is typically large
as compared to Linde. The unconditional distribution of LIt for Commerzbank is
heavily skewed to the right (with many volatility-increasing outbursts), whereas it
is fairly symmetric or even slightly left-skewed for Linde and MunichRe.

As LIt is a linear combination of the FPC scores of the liquidity processes, it
inherits its autocorrelation structure from ξ

(s)
t . As most elements of ξ

(s)
t are highly

persistent, so is LIt, as is shown in Figure 8.

4.3 Forecasting

Is liquidity information helpful in improving the forecasting performance? To
answer this question, we conduct an out-of-sample forecast exercise. We follow
Engle and Sokalska (2012) and use the negative quasi-log-likelihood (QLIKE) of
one-step-ahead volatility forecasts as loss function. An alternative method of fore-
cast evaluation would be the use of realized measures of volatility. However, such
measures are expected to be very noisy in a high-frequency setting, even if sub-
sampling or other measures, supposedly alleviating the impact of microstructure
noise, are used in RV estimation.
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Figure 6: Estimated functional parameters for Commerzbank (top panel), MunichRe
(center panel), and Linde (bottom panel), along with 95 percent confidence
bands. Results are for models with both bid (left) and ask (right) liquidity im-
pact, with K = 3 liquidity components, and D = 201 relative price levels. The
confidence bands are based on the conjectured asymptotic normality. Estima-
tion uncertainty from step 1 (eigenfunctions) is assumed to be negligible.
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Figure 7: Estimated liquidity impact for the models with two functional liquidity pro-
cesses, K = 3, D = 201. From left to right: Bid impact (blue), ask impact
(red), and cumulative impact (their product, black). From top to bottom: Com-
merzbank, MunichRe, and Linde.
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Figure 8: Sample autocorrelation functions of the estimated liquidity impact for the mod-
els with two functional liquidity processes, K = 3, and D = 201, for the first
480 lags (roughly four weeks). Both bid (top, blue) and ask (bottom, red) im-
pacts are highly persistent for all stocks — Commerzbank (left), MunichRe
(center), Linde (right) —, and market sides.
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Figure 9: Cumulative gains in out-of-sample predictive power, i.e., QLIKE(pure log-
GARCH) - QLIKE(log-GARCH-FunXL), from liquidity-driven GARCH mod-
els (K = 3, D = 51), as compared to models without liquidity impact, for
Commerzbank (left), MunichRe (center), and Linde (right).

Starting with the first two thirds of the available observations, 1 : b2
3
T c, we

reestimate all models considered above for each forecast step (i.e., T − b2
3
T c − 1

times) in an expanding window scheme. The sum over all one-step-ahead negative
log-likelihoods is shown in Table 4.

As before, the models accounting for both market sides yield the best results. For
all stocks considered, most of the GARCH-FunXL models provide highly significant
QLIKE improvements. Given that forecasting exercises tend to favor parsimonious
models, it is noteworthy that in all cases models with K = 4, i.e., with as many
as eleven parameters deliver the best forecasts. There is also strong evidence that
models with D = 51 or D = 101 outperform their competitors, indicating that
liquidity deep in the book is of limited relevance to volatility prediction. Inter-
estingly, this finding is much more pronounced for Linde than for Commerzbank,
although throughout the sampl Commerzbank’s price is much lower than that of
Linde, so that a price change by D cents implies a much higher relative change for
Commerzbank than for Linde.

Figure 9 depicts the step-by-step cumulative difference in QLIKE between log-
GARCH-FunXL and pure log-GARCH, for models with D = 51 and K = 3. It
shows that GARCH-FunXL improves over the pure GARCH specification at a
constant rate. Moreover, some large jumps indicate that also extreme returns can
be better predicted by using liquidity information.

5 Conclusion

In the present paper, we have put forward a class of semiparametric GARCH-X
models with functional exogeneous variables. The model is able to capture the
impact of liquidity, as implied by a limit order book, on asset price volatility.
In our simulations and applications to stock data, we have confined ourselves to
a log-GARCH version of the model which conveniently allows for the inclusion
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of complex, potentially negative functional predictors. In many aspects, linear
GARCH models are better understood and more tractable than log-linear versions
like log-GARCH or EGARCH. Therefore, an alternative GARCH-FunXL specifi-
cation could, for example, use the framework of Amado and Teräsvirta (2013), i.e.,
a product of a linear endogeneous GARCH part and a suitable transformation of
the exogeneous functional variables.

In an application to the German XETRA limit order book, we have shown
that the GARCH-FunXL model can successfully predict intraday volatility. While
originally taylored for limit order book data, the model may be useful in other
fields of application as well. For example, the term structure of interest rates can
be viewed as a functional time series. A further extension that we address in future
research is financial duration modeling with functional exogeneous liquidity. The
duration analogue to the log-GARCH-FunXL in this paper is an extension of the
log-ACD of Bauwens and Giot (2000).
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Commerzbank
AIC BIC

K 51 101 151 201 51 101 151 201
0 42995 42995 42995 42995 43017 43017 43017 43017
1 42977 42980 42982 42974 43014 43017 43020 43012
2 42650 42807 42874 42837 42702 42859 42926 42889
3 42631 42638 42643 42598 42698 42705 42710 42665
4 42608 42611 42638 42598 42690 42693 42719 42680
5 42551 42603 42612 42509 42648 42699 42709 42606

MunichRe
AIC BIC

K 51 101 151 201 51 101 151 201
0 41787 41787 41787 41787 41809 41809 41809 41809
1 41612 41466 41410 41366 41650 41504 41447 41404
2 41119 41039 41061 41057 41171 41091 41113 41109
3 41105 41039 41050 41035 41172 41106 41117 41102
4 41069 41033 41042 41028 41151 41115 41124 41110
5 41062 41034 41031 41029 41159 41130 41128 41125

Linde
AIC BIC

K 51 101 151 201 51 101 151 201
0 43517 43517 43517 43517 43539 43539 43539 43539
1 43236 43205 43200 43205 43273 43242 43238 43242
2 43212 43206 43204 43208 43264 43258 43256 43260
3 43210 43202 43196 43188 43277 43269 43263 43255
4 43189 43187 43185 43184 43271 43269 43267 43266
5 43192 43188 43181 43184 43289 43285 43278 43281

Table 3: Goodness-of-fit measures of the models with bid and ask liquidity impact for the
three stocks. The number of price levels apart from the quotes considered when
constructing the liquidity curves is D = 51 (101, 151, 201), corresponding to the
domains [¤0 , ¤0.50] ([¤0 , ¤1.00], [¤0 , ¤1.50], [¤0 , ¤2.00]).
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Commerzbank MunichRe Linde
K 51 101 151 201 51 101 151 201 51 101 151 201
0 2912 2912 2912 2912 4066 4066 4066 4066 4700 4700 4700 4700
1 2977 2785 2858 2860 3822 3767 3613 3554 4425 4345 4840 4884
2 2586 2764 2759 2758 3019 3284 3165 3091 4381 4337 4822 4856
3 2608 2515 2567 2573 3035 3290 3103 3020 4377 4328 4824 4856
4 2613 2602 2619 2577 2993 3248 3142 3067 4293 4303 4807 4848
5 2619 2608 2663 2782 3034 3242 3193 3068 4302 4266 4796 4838

Table 4: Negative out-of-sample likelihoods for one-step-ahead forecasts of GARCH-
FunXL models with bid and ask liquidity impacts. The number of price lev-
els apart from the quotes considered when constructing the liquidity curves is
D = 51 (101, 151, 201), corresponding to the domains [¤0 , ¤0.50] ([¤0 ,
¤1.00], [¤0 , ¤1.50], [¤0 , ¤2.00]).
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