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Abstract

Long memory effects can be found in different kind of data from finance to hydrology.
Therefore, models which can reflect these properties have become more popular in recent
years especially in the fields of time series analysis, econometrics and financial mathematics.
Mandelbrot-Van Ness fractional Lévy processes allow for such stationary long memory effects
in their increments and have been used in many settings ranging from fractionally integrated
continuous-time (autoregressive) moving average processes and exponential GARCH models
to general stochastic differential equations. However, their conditional distributions have not
yet been considered in detail. In this paper, we provide a closed formula for their conditional
characteristic functions and suggest several applications to continuous-time ARMA-GARCH-
type models with long memory.

Keywords: fractional Lévy processes, Mandelbrot-Van Ness kernel, long memory,
conditional characteristic function, prediction, forecasting, FICARMA, FIECOGARCH

1. Introduction

Fractional Lévy processes can be obtained in several ways via convolution of classical
Lévy processes and have been introduced to allow for long memory effects in increments.
There exist several possibilities to choose these convolution integrands with Mandelbrot-Van
Ness and Molchan-Golosov kernels being the most prominent examples. However in contrast
to Brownian motion, both of these approaches do not lead to the same kind of fractional pro-
cesses. Mandelbrot-Van Ness fractional Lévy processes (MvN-fLps) which have been consid-
ered by Marquardt (2006) allow for stationary increments, while Molchan-Golosov fractional
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Lévy processes (MG-fLps) offer the possibility of having fractional subordinators, ie. strictly
increasing processes (cf. Bender and Marquardt (2009), Tikanmäki and Mishura (2011) or
Fink (2013)). While the later ones could be a good choice for derivative pricing in eg. in-
terest rate, credit or stochastic volatility settings where positive processes are needed, the
first ones might be better suited for time series analysis due to their stationarity (eg. Haug
and Czado (2010)). In all these situations however, whether one is interested in time series
prediction or derivative pricing, it is very useful to understand the respective conditional
distributions. While these have been considered already in Fink (2013) for MG-fLps, to the
best of our knowledge, there is not yet a full characterization for MvN-fLps in the literature.
In this paper we want to close this gap by providing a closed formula for the conditional
characteristic function of these processes which completely characterizes the conditional dis-
tribution and allows for easy and quick calculations of moments like conditional expectation
and conditional variance via differentiation.

The paper is structured as follows. Section 2 provides a brief review on MvN-fLps and
states the necessary integration-concept and a linkage between the MvN-fLp and its driving
Lévy process. Section 3 provides the main theorem about conditional distributions based on
the conditional characteristic functions. For better readability, its lengthy proof is postponed
to the end of the paper. In Section 4 we shall discuss several possible applications of our
prediction formula. Finally, Section 5 contains the proof of our main theorem followed by a
brief outlook to future research.

For the rest of the paper, we will always work on a complete probability space (Ω,F ,P).
Furthermore we impose that L = (L(t))t∈R is a given two-sided zero-mean Lévy process with
finite second moments, ie. E[L(1)2] < ∞. Its (augmented) filtration (Ft)t∈R is assumed
to satisfy the usual conditions of right-continuity and completeness (cf. Theorem 2.1.9 of
Applebaum (2004)). The characteristic function of L shall be given for u ∈ R by

E[exp{iuL(t)}] = exp{tψ(u)}, t ∈ R

with

ψ(u) = iγu− 1

2
σ2u2 +

∫

R
(exp{iux} − 1− iux1{|x|<1})ν(dx),

where γ ∈ R, σ2 > 0 and the measure ν satisfies

ν({0}) = 0,

∫

Rn
(‖x‖2 ∧ 1)ν(dx) <∞.

The indicator function shall be denoted by 1[s,t) for s, t ∈ R while we set

1[s,t) = −1(t,s]

2



when t < s.

2. Mandelbrot-Van Ness fractional Lévy processes

In this section we want to provide a brief review on Mandelbrot-Van Ness fractional
Lévy processes. We want to stress that although our main focus lies in long memory settings
(d ∈ (0, 1

2
)), our considerations shall include the perturbance case (d ∈ (−1

2
, 0)) as well.

In the following, we shall heavily draw from Marquardt (2006), state some straightfor-
ward extensions to the situation of d ∈ (−1

2
, 0) and concentrate on the necessary concepts

needed for the conditional characteristic functions later in Section 3. In contrast to Mar-
quardt (2006), we shall also allow our driving Lévy process to have a Brownian part but as
fractional Brownian motion already has been investigated in much detail, this generalization
is straightforward having the Lévy-Itô-decomposition in mind.

Definition 2.1 (Version of Marquardt (2006), Definition 3.1, and Tikanmäki and Mishura (2011),
Definition 2.3). For d ∈ (−1

2
, 1

2
) set

Md(t) :=
1

Γ(d+ 1)

∫ ∞

−∞
[(t− s)d+ − (−s)d+]L(ds), t ∈ R, (2.1)

where the integrals are considered in the L2(Ω)-sense. Then we call the process Md =
(Md(t))t∈R a Mandelbrot-Van Ness fractional Lévy process (MvN-fLp) and L the driving
Lévy process of Md.

The next proposition summarizes the main properties of MvN-fLps.

Proposition 2.2 (Version of Marquardt (2006), Theorem 3.7, Theorem 4.1 and Theorem
4.4). For d ∈ (−1

2
, 1

2
) let Md be a MvN-fLp. Then we have:

(i) If d ∈ (0, 1
2
), then Md has a modification with continuous sample paths.

(ii) For s, t ∈ R

Cov(Md(t),Md(s)) =
E[L(1)]2

2Γ(2d+ 2) sin(π(d+ 1
2
))

[|t|2d+1 + |s|2d+1 − |t− s|2d+1].

(iii) Md has stationary increments and is symmetric.

To define integration with respect to MvN-fLps, we need the (right-sided) Riemann-
Liouville fractional integral for d ∈ (0, 1

2
) defined by

Id−[g](x) =
1

Γ(d)

∫ ∞

x

g(t)(t− x)d−1dt, x ∈ R,

3



if the integrals exist almost everywhere. Furtheremore the (right-sided) Marchaud fractional
derivative is introduced as a somewhat inverse operator using

Dd
−[g](x) = lim

ε↘0
Dd
−,ε[g](x)

if the limit exists almost everywhere for x ∈ R, where

Dd
−,ε[g](x) = − d

Γ(1− d)

∫ ∞

ε

g(x)− g(x+ t)

t1+d
dt, x ∈ R, ε > 0,

The expression Dd
−,ε is also often called truncated Marchaud fractional derivative. A very de-

tailed survey of these (and related concepts) can be found in Samko, Kilbas and Marichev (1993).
Especially the question of existence of these operators is rather sophisticated; however in this
paper, we shall only consider specific situations where this existence is ensured.

For negative d ∈ (−1
2
, 0) we shall set Id− := D−d− and Dd

− := I−d− while for d = 0 we define
Id− := id =: Dd

−.
In the light of Pipiras and Taqqu (2000; 2001) we construct similar to Marquardt (2006)

the following integrand space: define for d ∈ (0, 1
2
) H̃d as the completion of L1(R) ∩ L2(R)

with respect to the norm

‖g‖H̃d :=
(
E[L(1)2]

∫

R
(Id−[g](v))2dv

) 1
2
.

As pointed out by Bender and Elliott (2003), multiplication by indicator functions can
actually increase this norm. To avoid any such issues, we shall consider an adjusted integrand
space defined by

Hd := {g : R→ R|∀ −∞ ≤ a ≤ b ≤ ∞ : 1[a,b)g ∈ H̃d}.

By Proposition 5.1 of Marquardt (2006) it follows that

L1(R) ∩ L2(R) ⊆ Hd

which shows that the restricted space is still rich enough for many applications. For d = 0
just set Hd = L1(R) ∩ L2(R).

Although the focus of this paper lies on long memory models, we still want to include
the perturbance case: for d ∈ (−1

2
, 0) define

Hd :=
{
g : R→ R|∃φ ∈ L1(R) ∩ L2(R) : g = I−d− [φ]

}
.

Here one can actually show that this space is closed with respect to multiplication with
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indicator functions: if g ∈ Hd with g = I−d− [φ], then for all −∞ ≤ a ≤ b ≤ ∞, we have

1[a,b)g = I−d− [D−d− [1[a,b)I
−d
− [φ]]]

The argument is quite lengthy but very similar to the proof of Proposition 5.1. Since the
focus of this paper are long memory models, we leave it to the interested reader.

Theorem 2.3. [Extension of Marquardt (2006), Theorem 5.3] For d ∈ (−1
2
, 1

2
) let Md be a

MvN-fLp and g ∈ Hd. Then the integral
∫
R g(v)Md(dv) exists as L2(Ω)-limit of approximat-

ing step functions. Furthermore

∫

R
g(v)Md(dv)

L2(Ω)
=

∫

R
Id−[g](v)L(dv).

Proof. For d ∈ (0, 1
2
) this is covered by Theorem 5.3 of Marquardt (2006) and Theorem 3.2

of Pipiras and Taqqu (2000) while the case d ∈ (−1
2
, 0) follows similarly having Theorem 3.3

of Pipiras and Taqqu (2000) in mind. Finally, the situation d = 0 is just the classical Lévy
integration.

3. Conditional distribution of MvN-fLps

Let FMd = (FMd
t )t∈R and FL = (FLt )t∈R be the (augmented) filtration generated by Md

and its underlying Lévy process L, respectively. Therefore

FMd
t = σ{Md(s), s ∈ (−∞, t]}, FLt = σ{L(s), s ∈ (−∞, t]}.

In contrast to MG-fLps which are defined via convolution on compact time intervals, the
filtration generated by a MvN-fLp is in general not equal to the one generated by its driving
Lévy process, ie. FMd 6= FL. This can be seen by the following argument: as a consequence
of our Theorem 2.3, Theorem 6.1 of Samko, Kilbas and Marichev (1993) and Lemma 2 of
Pipiras and Taqqu (2002), we obtain the following representations in the L2(Ω)-sense:

Md(t) =

∫

R
Id−[1[0,t)](v)L(dv), L(t) =

∫

R
Dd
−[1[0,t)](v)Md(dv), t ∈ R.

Since for t ≥ 0 we have

supp(Id−[1[0,t)]) ∩ (t,∞] = ∅,

it follows that

FMd
t = FLt .
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However on the other side

supp(Id−[1[0,t)]) = supp(Id−[1(t,0]]) = (−∞, 0)

for all t < 0. Therefore the filtrations are not equal for such t < 0, similar to the case
of fractional Brownian motion (cf. Proposition 1 of Pipiras and Taqqu (2002)). It might
be more natural to condition on FMd , especially when having conditional distributions in
mind which are - as it is well known - completely specified by the conditional characteristic
functions. However in our following main theorem we will cover both cases. Its proof will
be postponed to Section 5.

Theorem 3.1. For d ∈ (−1
2
, 1

2
) let Md be a MvN-fLp and g ∈ Hd. Then we have for all

s, t ∈ R with s ≤ t and u ∈ R

E
[

exp
{
iu

∫ t

−∞
g(v)Md(dv)

}∣∣∣FMd
s

]

(i)
= exp

{
iu

∫ s

−∞
g(v)Md(dv) + iu

∫ s

−∞
Dd
−[1(−∞,s)I

d
−[1[s,t)g]](v)Md(dv)

}

× exp
{∫ t

s

ψ{u · Id−[1[s,t)g](v)}dv
}

(ii)
= E

[
exp

{
iu

∫ t

−∞
g(v)Md(dv)

}∣∣∣FLs
]

while

• equation (i) holds in the L2(Ω)-sense for s ≥ 0 and in distribution for s < 0,

• equation (ii) holds in the L2(Ω)-sense for all s ∈ R.

Furthermore, we have for z ∈ R

Dd
−[1(−∞,s)I

d
−[1[s,t)g]](z) = 1(−∞,s)(z)

sin(πd)

π
(s− z)−d

∫ t

s

g(η)
(η − s)d
η − z dη.

4. Applications to fractional time series models and stochastic differential equa-
tions

In this section we want to present some potential applications of Theorem 3.1 to stress
its importance. We shall focus especially on the forecasting problem in continuous-time
fractional ARMA-GARCH-type models. For the rest of this section, let d ∈ (0, 1

2
) and

consider only MvN-fLps without a (fractional) Brownian component.
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4.1. Fractionally integrated moving average processes

Motivated by Theorem 6.2 of Marquardt (2006), fractionally integrated moving aver-
age (FIMA) processes can be introduced directly via a moving average representation with
respect MvN-fLps.

Definition 4.1. For d ∈ (0, 1
2
) let Md be a MvN-fLp and g ∈ Hd with g(t) = 0 for all t < 0.

Then the respective FIMA process Yd = (Yd(t))t∈R is given by

Yd(t) =

∫ t

−∞
g(t− s)Md(ds), t ∈ R.

Similar to MvN-fLps, these kind of processes allow to model long range dependence in
the context of time series analysis (Marquardt (2006), Theorem 6.3). Theorem 3.1 now
provides the necessary tool to calculate forecasts in such a setting. After estimating the
kernel function g, we can obtain predictions for future values, via the following:

Theorem 4.2. Let Yd = (Yd(t))t∈R be a FIMA process such that FYd = FMd. Then we have

E[Yd(t)|FYds ]
(i)
=

∫ s

−∞
g(t− v)Md(dv) +

∫ s

−∞
Dd
−[1(−∞,s)I

d
−[1[s,t)g(t− ·)]](v)Md(dv),

while equation (i) holds in the L2(Ω)-sense for s ≥ 0 and in distribution for s < 0.

Proof. By Theorem 3.1 we already know the complete conditional characteristic function of
Yd. The forecast can then be derived by differentiation. For s ≥ 0 we have

E[Yd(t)|FYds ] = E
[ ∫ t

−∞
g(t− v)Md(dv)

∣∣∣FMd
s

]

= −i ∂
∂u

∣∣∣
u=0

E
[

exp
{
iu

∫ t

−∞
g(t− v)Md(dv)

}∣∣∣FMd
s

]

=

∫ s

−∞
g(t− v)Md(dv) +

∫ s

−∞
Dd
−[1(−∞,s)I

d
−[1[s,t)g(t− ·)]](v)Md(dv).

The situation s < 0 works in a similar way but only holds in distribution.

4.2. Fractionally integrated CARMA processes

An important special case of FIMA processes is the class of fractionally integrated
continuous-time autoregressive moving average (FICARMA) processes initially derived by
Brockwell (2004) via a fractional integration kernel with respect to a Lévy process L. How-
ever, as the core object of this paper are MvN-fLps, we shall state the FICARMA-definition
similar to Marquardt (2007).
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Definition 4.3 (Univariate version of Marquardt (2007), Definition 3.4). For d ∈ (0, 1
2
) let

Md be a MvN-fLp. Furthermore, let a and b be polynomials with

a(z) = zp + a1z
p−1 + . . .+ ap, and b(z) = b0z

q + b1z
q−1 + . . .+ bq,

where p > q are integers, ap 6= 0, b0 6= 0, bq 6= 0 and the zeros of a are assumed to lie in
(−∞, 0) + iR. Then a FICARMA(p, d, q) process Yd = (Yd(t))t∈R is given by

Yd(t) =

∫ t

−∞
g(t− s)Md(ds), t ∈ R,

with

g(t) =
1

2π

∫

R
eiθt

b(iθ)

a(iθ)
dθ, t ∈ R.

As FICARMA processes are nested within the FIMA setting and one can show g ∈
L1(R) ∩ L2(R), Theorem 4.2 can directly be applied.

4.3. Stochastic volatility and fractional GARCH-type settings

As pointed out on several occasions in the literature, the existence of a natural continuous-
time fractional version of the discrete-time stationary GARCH process is not clear (cf. Haug
and Czado (2010) or Mikosch and Stărică (2002)). This is eg. reflected by the fact that
MvN-fLps have stationary increments but it is not possible to obtain a strictly positive
process - which one would like to have in a GARCH setting. There are several possibilities
to tackle this issue: for example, one could use fractional MG-fLp subordinators (cf. Bender
and Marquardt (2009) for a stochastic volatility model based on these processes) which
however do not have stationary increments. Another approach is investigated by the recent
model of Haug, Klüppelberg and Straub (2014) which is based on a modified MvN-kernel
but generally leaves the MvN-setting.

Finally, one can always transform MvN-fLps to make them positive. Eg. Haug and
Czado (2010) introduced such a general model using an exponential FIMA process:

Definition 4.4 (Version of Haug and Czado (2010), Definition 2.1). Let K be a Lévy process
with zero-mean and unit variance. Furthermore take L as the Lévy process constructed from
K via equation (2.7) of Haug and Czado (2010). For d ∈ (0, 1

2
) let Md be a MvN-fLp driven

by L.
We assume given polynomials a and b with

a(z) = 1− a1z + . . .+ aqz
q, and b(z) = b1 + b2z + . . .+ bpz

p−1,

where q > p are integers, aq 6= 0, bp 6= 0 and the zeros of a are assumed to lie in (−∞, 0)+iR.
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Then the fractionally integrated exponential COGARCH(p, d, q) (FIECOGARCH(p, d, q)) is
given by

dGd(t) = σd(t)dK(t), t > 0, Gd(0) = 0,

where

log(σ2
d(t+)) = µ+

∫ t

−∞
g(t− s)Md(ds), t > 0

with µ ∈ R and initial value log(σ2
d(0)) independent of L. The integrand is given by

g(t) =
1

2π

∫

R
eiθt

b(iθ)

a(iθ)
dθ, t ∈ R.

As the volatility in the FIECOGARCH(p, d, q) setting is designed as an exponential FIMA
process, we can again use Theorem 4.2 for forecasting:

Theorem 4.5. Let σ2
d = (σ2

d(t+))t≥0 be the volatility process in the
FIECOGARCH(p, d, q) model and assume the existence of the respective exponential moment
and (Fσ2

d)t≥0 = (FMd)t≥0. Then we have for s ≥ 0 the following L2(Ω)-equality:

E[σ2
d(t+))|Fσ

2
d

s ]

= exp
{
iu

∫ s

−∞
g(t− v)Md(dv) + iu

∫ s

−∞
Dd
−[1(−∞,s)I

d
−[1[s,t)g(t− ·)]](v)Md(dv)

}

× exp
{∫ t

s

ψ{u · Id−[1[s,t)g(t− ·)](v)}dv
}
.

Proof. Follows directly by invoking Theorem 3.1 and continuation of the characteristic func-
tion to C.

4.4. Stochastic differential equations

Finally, our results can also be of use to general stochastic differential equations (sdes).
Invoking Theorem 3.1 we are able to calculate conditional characteristic functions of integrals
driven by MvN-fLps. This also includes fractional Lévy Ornstein-Uhlenbeck processes of the
type

Mλ
d(t) =

∫ t

−∞
e−λ(t−s)Md(ds), t ∈ R, λ ≥ 0.

Fink and Klüppelberg (2011) showed that these kind of processes not only exist in the
pathwise sense, but are also the unique stationary and pathwise solutions to the respective

9



pathwise Langevin sdes

dMλ
d(t) = −λMλ

d(t)dt+Md(dt), t ∈ R.

Based on earlier work of Zähle (2001) and Buchmann and Klüppelberg (2006), Fink and
Klüppelberg (2011) showed that under some conditions on coefficient functions of a general
sde

dX(t) = µ(X(t))dt+ σ(X(t))Md(dt), t ∈ R,

pathwise solutions can be obtained of the form X(t) = f(Mλ
d(t)), t ∈ R, where f is an invert-

ible function. Using well-known fourier techniques, like in Theorem 3.8 of Fink, Klüppelberg
and Zähle (2012), we can straightforwardly calculate the conditional characteristic function
of such pathwise solutions under assumption of existing suitable exponential moments of
Mλ

d via

E
[
eiuf(Mλ

d (t))
∣∣∣FM

λ
d

s

]
= E

[
eiuf(Mλ

d (t))
∣∣∣FMd

s

]

=

∫

R

(
E
[
e(iξ+1)Mλ

d (t)
∣∣∣FMd

s

]
ĝ+(ξ, u) + E

[
e(iξ−1)Mλ

d (t)
∣∣∣FMd

s

]
ĝ−(ξ, u)

)
dξ

for u ∈ R, t, s ∈ R with s ≤ t and

ĝ±(ξ, u) = (2π)−1

∫

R±

e−(iξ±1)x+iuf(x)dx, ξ ∈ R.

The conditional expectation

E[e(iξ+1)Mλ
d (t)|FMd

s ]

is then given by the continuation of the characteristic function in Theorem 3.1 to C.

5. Proof of Theorem 3.1

Before considering the proof of our main theorem, we need the following proposition:

Proposition 5.1. For d ∈ (−1
2
, 1

2
), g ∈ Hd and t, s ∈ R with s ≤ t the function

R→ R, z 7→ Dd
−[1(−∞,s)I

d
−[1[s,t)g]](z)

= 1(−∞,s)(z)
sin(πd)

π
(s− z)−d

∫ t

s

g(η)
(η − s)d
η − z dη (5.2)
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is well defined with

Id−[Dd
−[1(−∞,s)I

d
−[1[s,t)g]]] = 1(−∞,s)I

d
−[1[s,t)g] (5.3)

Proof. The statements are trivial for d = 0 since I0
− = D0

− = id per definition. It follows
that

1(−∞,s)I
0
−[1[s,t)g] = 1(−∞,s)1[s,t)g ≡ 0.

Consider d ∈ (0, 1
2
). Since g ∈ Hd we have 1(−∞,s)Id−[1[s,t)g] ∈ L2(R). If z ≥ s both sides of

(5.3) are equal to zero. However for z < s the existence of the respective Marchaud fractional
derivative is not trivial. Therefore we start with its truncated version and take ε such that
z < s− ε:

Dd
ε,−[1(−∞,s)I

d
−[1[s,t)g]](z)

=
d

Γ(1− d)Γ(d)

·
∫ ∞

ε

1(−∞,s)(z)
[ ∫ t

s
g(η)

(η−z)1−ddη
]
− 1(−∞,s)(z + θ)

[ ∫ t
s

g(η)
(η−z−θ)1−ddη

]

θ1+d
dθ

=
sin(πd)d

π

{∫ ∞

s−z

∫ t
s

g(η)
(η−z)1−ddη

θ1+d
dθ

+

∫ s−z

ε

∫ t
s
g(η)[(η − z)d−1 − (η − z − θ)d−1]dη

θ1+d
dθ

}

=
sin(πd)d

π

{
(s− z)−d

d

∫ t

s

g(η)

(η − z)1−ddη

∫ t

s

g(η)

(∫ s−z

ε

(η − z)d−1 − (η − z − θ)d−1

θ1+d
dθ

)
dη

}

where we achieved the last equality by Fubini’s theorem. Considering just the inner integral
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of the second term, we obtain by substituting ζ = (η − z)/θ

∫ s−z

ε

(η − z)d−1 − (η − z − θ)d−1

θ1+d
dθ

=

∫ s−z

ε

(η − z)d−1

θ1+d
−
∫ s−z

ε

(η − z − θ)d−1

θ1+d
dθ

=
(η − z)d−1

d

[
ε−d − (s− z)−d

]
−
∫ (η−z)/ε

(η−z)/(s−z)

(ζ − 1)d−1

η − z dζ

=
(η − z)d−1

d

[
ε−d − (s− z)−d

]
− 1

(η − z)d

[(η − z
ε
− 1
)d

+
(η − z
s− z − 1

)d]
.

Plugging everything together, we arrive at

Dd
ε,−[1(−∞,s)I

d
−[1[s,t)g]](z)

=
sin(πd)

π

{∫ t

s

g(η)
(η − z)d−1 − (η − z − ε)d−1

εd
dη + (s− z)−d

∫ t

s

g(η)
(η − s)d
η − z dη

}
.

By binomial expansion of the numerator (η − z)d−1 − (η − z − ε)d−1 one can show that the
first summand goes to zero for ε→ 0 and it follows that for z ∈ R

Dd
−[1(−∞,s)I

d
−[1[s,t)g]](z) = 1(−∞,s)(z)

sin(πd)

π
(s− z)−d

∫ t

s

g(η)
(η − s)d
η − z dη.

It remains to show that (5.3) holds. Similar to Gripenberg and Norros (1996), we can show
that Dd

−[1(−∞,s)Id−[1[s,t)g]] ∈ L2(R) and therefore its fractional integral exists. Take x < s
and after applying Fubini’s theorem we obtain

Id−[Dd
−[1(−∞,s)I

d
−[1[s,t)g]]](x) =

1

Γ(1− d)

∫ t

s

g(η)(η − s)d
(∫ s

x

(ξ − x)d−1

(s− ξ)d(η − ξ)dξ
)
dη.

Considering the right-hand-side of (5.3), it would be sufficient to show

∫ s

x

(ξ − x)d−1

(s− ξ)d(η − ξ)dξ =
Γ(1− d)

Γ(d)

(η − x)d−1

(η − s)d (5.4)

for x ≤ s ≤ η. In order to do that, we shall work with the basic result from Gripenberg
and Norros (1996): based on our notation, they showed for a fractional Brownian motion
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Bd (d ∈ (0, 1
2
)) without using fractional integration or differentiation that for t ≥ 0

E[Bd(t)|FBd0 ] =

∫ 0

−∞
h(t, x)Bd(dx), where

h(t, x) = 1(−∞,0)(x)
sin(πd)

π
(−x)−d

∫ t

0

ηd

η − xdη.

However since FBd0 = FB0 , one can calculate the conditional expectation in terms of the
driving Brownian motion as well and obtain via Theorem 2.3 and the independent increments
of B

E[Bd(t)|FBd0 ] = E
[ ∫

R
Id−[1[0,t)](x)B(dx)

∣∣∣FB0
]

=

∫ 0

−∞
Id−[1[0,t)](x)B(dx).

Due to the uniqueness of the conditional expectation, we can deduce that

∫ 0

−∞
h(t, x)Bd(dx) =

∫ 0

−∞
Id−[1[0,t)](x)B(dx)

holds almost surely. Since their second moments exist, both random variables have to be
equal in the L2(Ω)-sense as well. Invoking Theorem 2.3, this translates to

Id−[1(−∞,0)h(t, ·)](x) = 1(−∞,0)(x)Id−[1[0,t)](x)

almost everywhere. Using fractional calculus and (5.2), this means that (5.3) holds for
g = 1[0,t) and s = 0, ie.

1

Γ(1− d)

∫ t

0

ηd
(∫ 0

x

(ξ − x)d−1

(−ξ)d(η − ξ)dξ
)
dη =

1

Γ(d)

∫ t

0

(η − x)d−1dη

for almost all x ≤ 0. As the integrand functions on both sides are continuous and the above
equality holds for all t ≥ 0, it follows that for all 0 ≤ η ≤ t:

∫ 0

x

(ξ − x)d−1

(−ξ)d(η − ξ)dξ =
Γ(1− d)

Γ(d)

(η − x)d−1

ηd

For general x ≤ s ≤ η ≤ t however, (5.4) can always be shifted back to the above by invoking
the substitution ζ = ξ−s. Therefore we have shown that (5.4) holds and the assertion follows
for d ∈ (0, 1

2
).

Finally, take d ∈ (−1
2
, 0). Then by definition we have Id−[1[s,t)g] ∈ L2(R) and therefore

1(−∞,s)Id−[1[s,t)g] ∈ L2(R) as well. Having in mind that Id− is now actually the Marchaud

13



derivative and Dd
− the fractional integration operator, it follows that Dd

−[1(−∞,s)Id−[1[s,t)g]]
is well-defined. By Theorem 6.1 of Samko, Kilbas and Marichev (1993) we additionally see
that (5.3) holds. The representation (5.2) is derived similar to the case d ∈ (0, 1

2
).

Having this in mind, we shall carry out the proof of Theorem 3.1 in three steps starting
with the simplest case, where one conditions on FMd

s with s ≥ 0. For ease of notation, we
shall always imply equality in the L2(Ω)-sense when applying Theorem 2.3 and not mention
it specifically every such time.

Lemma 5.2. For d ∈ (−1
2
, 1

2
) let g ∈ Hd. Then for all s, t ∈ R+ with s ≤ t and u ∈ R

equations (i) and (ii) hold true in the L2(Ω)-sense.

Proof. Since g ∈ Hd, we know that all restrictions of g are also element of Hd by definition.
We then decompose and apply Theorem 2.3 as follows:

∫ t

−∞
g(v)Md(dv) =

∫ s

−∞
g(v)Md(dv) +

∫ t

s

g(v)Md(dv)

=

∫ s

−∞
g(v)Md(dv) +

∫

R
1[s,t)(v)g(v)Md(dv)

=

∫ s

−∞
g(v)Md(dv) +

∫

R
Id−[1[s,t)g](v)L(dv)

=

∫ s

−∞
g(v)Md(dv) +

∫ s

−∞
Id−[1[s,t)g](v)L(dv)

+

∫ t

s

Id−[1[s,t)g](v)L(dv). (5.5)

By definition we know that
∫ s
−∞ g(v)L(dv) and

∫ s
−∞ I

d
−[1[s,t)g](v)L(dv) are FMd

s -measurable

since FMd
s = FLs for s ≥ 0. Therefore we obtain

E
[

exp
{
iu

∫ t

−∞
g(v)Md(dv)

}∣∣∣FMd
s

]

= exp
{
iu
[ ∫ s

−∞
g(v)Md(dv) +

∫ s

−∞
Id−[1[s,t)g](v)L(dv)

]}

×E
[

exp
{
iu

∫ t

s

Id−[1[s,t)g](v)L(dv)
}∣∣∣FMd

s

]

However due to the fact that

supp(Id−[1[0,w)]) ∩ [s, t) = ∅
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for w ∈ R, s, t ∈ R+ with w ≤ s ≤ t, the expression in the conditional expectation is
independent of FMd

s and the unconditional expectation can be calculated by Theorem 2.7 of
Rajput and Rosinski (1989):

E
[

exp
{
iu

∫ t

s

Id−[1[s,t)g](v)L(dv)
}∣∣∣FMd

s

]

= E
[

exp
{
iu

∫ t

s

Id−[1[s,t)g](v)L(dv)
}]

= exp
{∫ t

s

ψ{u · Id−[1[s,t)g](v)}dv
}
.

Finally, we obtain

∫ s

−∞
Id−[1[s,t)g](v)L(dv) =

∫

R
1(−∞,s)(v)Id−[1[s,t)g](v)L(dv)

=

∫

R
IdDd

−1(−∞,s)(v)Id−[1[s,t)g](v)L(dv)

=

∫

R
Dd
−[1(−∞,s)I

d
−[1[s,t)g]](v)Md(dv)

=

∫ s

−∞
Dd
−[1(−∞,s)I

d
−[1[s,t)g]](v)Md(dv)

by applying Proposition 5.1 and Theorem 2.3. Also, we used in the last line that

supp(Dd
−[1(−∞,s)I

d
−[1[s,t)g]]) ⊆ (−∞, s).

Since FMd
s = FLs for s ≥ 0, the assertion follows.

One of the main steps in the previous proof was based on

supp(Id−[1[0,w)]) ∩ [s, t) = ∅

for w ∈ R, s, t ∈ R+ with w ≤ s ≤ t which implied FMd
s = FLs for s ≥ 0. However, as

discussed at the beginning of Section 3, the equality of the filtration no longer holds true if
we condition on s < 0. Therefore we have to consider both possible cases in this situation
starting with conditioning on FMd

s .

Lemma 5.3. For d ∈ (−1
2
, 1

2
) let g ∈ Hd. Then equation (i) holds in distribution for all

u ∈ R and s, t ∈ R with s ≤ t and s < 0.

Proof. The decomposition (5.5) no longer helps, since now

supp(Id−[1[0,s)]) ∩ [s, t) 6= ∅.
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As consequence, the random variable
∫ s
−∞ I

d
−[1[s,t)g](v)L(dv) does no longer have to be FMd

s -

measurable and
∫ t
s
Id−[1[s,t)g](v)L(dv) is not independent of FMd

s anymore. Therefore, choose
c > 0 such that s+c ≥ 0. Due to the stationarity of the Md-increments (Proposition 2.2 (iii))
we obtain

E
[

exp
{
iu

∫ t

−∞
g(v)Md(dv)

}∣∣∣FMd
s

]

d
= E

[
exp

{
iu

∫ t+c

−∞
g(v − c)Md(dv)

}∣∣∣FMd
s+c

]

= exp
{
iu

∫ s+c

−∞
g(v − c)Md(dv)

}

×E
[

exp
{
iu

∫ t+c

s+c

g(v − c)Md(dv)
}∣∣∣FMd

s+c

]
(5.6)

while FMd
s+c = FLs+c holds again. Furthermore we get

E
[

exp
{
iu

∫ t+c

s+c

g(v − c)Md(dv)
}∣∣∣FMd

s+c

]

= E
[

exp
{
iu

∫

R
1[s+c,t+c)(v)g(v − c)Md(dv)

}∣∣∣FMd
s+c

]

= E
[

exp
{
iu

∫

R
Id[1[s+c,t+c)g(· − c)](v)L(dv)

}∣∣∣FLs+c
]

= exp
{
iu

∫ s+c

−∞
Id[1[s+c,t+c)g(· − c)](v)L(dv)

}

×E
[

exp
{
iu

∫ t+c

s+c

Id[1[s+c,t+c)g(· − c)](v)L(dv)
}∣∣∣FLs+c

]

Plugging this into equation (5.6) we see that the remaining expectation is independent of
the filtration and by stationarity of the L-increments and Theorem 2.3 we get for the first
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part

exp
{
iu

∫ s+c

−∞
g(v − c)Md(dv) + iu

∫ s+c

−∞
Id[1[s+c,t+c)g(· − c)](v)L(dv)

}

= exp
{
iu

∫ s+c

−∞
Id[1(−∞,s+c)g(· − c)](v)L(dv)

}

× exp
{
iu

∫ s+c

−∞
Id[1[s+c,t+c)g(· − c)](v)L(dv)

}

d
= exp

{
iu

∫ s

−∞
Id[1(−∞,s+c)g(· − c)](v + c)L(dv)

}

× exp
{
iu

∫ s

−∞
Id[1[s+c,t+c)g(· − c)](v + c)L(dv)

}

= exp
{
iu

∫ s

−∞
g(v)Md(dv) + iu

∫ s

−∞
Id[1[s,t)g](v)L(dv)

}
.

While for the conditional expectation, we obtain due to independent L-increments

E
[

exp
{
iu

∫ t+c

s+c

Id[1[s+c,t+c)g(· − c)](v)L(dv)
}∣∣∣FLs+c

]

= E
[

exp
{
iu

∫ t+c

s+c

Id[1[s+c,t+c)g(· − c)](v)L(dv)
}]

= exp
{∫ t+c

s+c

ψ{u · Id[1[s+c,t+c)g(· − c)](v)}dv
}

= exp
{∫ t

s

ψ{u · Id[1[s,t)(· − c)g(· − c)](v + c)}dv
}

= exp
{∫ t

s

ψ{u · Id[1[s,t)g](v)}dv
}
.

Putting everything together we obtain the assertion.

We finally need to condition on FLs , s < 0, to obtain the last part of our main theorem.

Lemma 5.4. For d ∈ (−1
2
, 1

2
) let g ∈ Hd. Then equation (ii) holds in the L2(Ω)-sense for

all u ∈ R and s, t ∈ R with s ≤ t and s < 0.

Proof. We start with the decomposition (5.5): per definition, the random variable
∫ s
−∞ I

d
−[1[s,t]g](v)L(dv)

is FLs -measurable. Using

supp(Id−[1(−∞,s)g]) ∩ [s,∞) = ∅
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and Theorem 2.3 we obtain
∫ s

−∞
g(v)Md(dv) =

∫

R
Id−[1(−∞,s)g](v)L(dv) =

∫ s

−∞
Id−[1(−∞,s)g](v)L(dv)

and conclude that
∫ s
−∞ I

d
−[1[s,t)g](v)L(dv) is FLs -measurable as well. Furthermore we have

E
[

exp
{
iu

∫ t

s

Id−[1[s,t)g](v)L(dv)
}∣∣∣FLs

]
= E

[
exp

{
iu

∫ t

s

Id−[1[s,t)g](v)L(dv)
}]

and can carry out the rest of the proof analogously to the proof of Lemma 5.2.

Proof of Theorem 3.1. Putting Lemma 1-3 together we obtain the results regarding the con-
ditional characteristic functions. The specific representation for Dd

−[1(−∞,s)Id−[1[s,t)g]] follows
from Proposition 5.1.

6. Outlook

Although we considered only univariate MvN-fLps, the obtained results on conditional
characteristic functions can be straightforwardly extended to a multivariate setting as con-
sidered eg. in Marquardt (2007).

In addition, conditional characteristic functions can be used to price derivatives in frac-
tional market settings based on MvN-fLps. However, in general, markets driven by frac-
tional Lévy processes (whether of the MvN- or the MG-type) might allow for arbitrage as
in the case of fractional Brownian motion (eg. Cheridito (2003) or Bender, Sottinen and
Valkeila (2007)). Although there exists already a full characterization of when MvN-fLps
are semimartingales (cf. Bender, Lindner and Schicks (2011)), this only allows for an equiv-
alence of the existence of an equivalent martingale measure and the exclusion of arbitrage
- it does not yet rule out arbitrage itself. In fact, as there are many similarities between
fractional Brownian motion and MvN- or MG-fLps, one might conjecture that these mar-
kets even allow for arbitrage opportunities when the driving power is such a semimartingale.
However, in the literature there exist several solutions to this general modeling issue (eg.
introduction of transaction costs in Guasoni, Rásonyi and Schachermayer 2008; 2010) or
restriction of trading strategies in Bender, Sottinen and Valkeila (2008) or Tikanmäki and
Mishura (2011)). Therefore our results on conditional characteristic functions of MvN-fLps
might also be useful in such situations.
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